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Asymptotic Effect of Initial and
Upstream Conditions on
Turbulence
More than two decades ago the first strong experimental results appeared suggesting that
turbulent flows might not be asymptotically independent of their initial (or upstream) con-
ditions (Wygnanski et al., 1986, “On the Large-Scale Structures in Two-Dimensional
Smalldeficit, Turbulent Wakes,” J. Fluid Mech., 168, pp. 31–71). And shortly thereafter
the first theoretical explanations were offered as to why we came to believe something
about turbulence that might not be true (George, 1989, “The Self-Preservation of Turbu-
lent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in
Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41). These were
contrary to popular belief. It was recognized immediately that if turbulence was indeed
asymptotically independent of its initial conditions, it meant that there could be no uni-
versal single point model for turbulence (George, 1989, “The Self-Preservation of Turbu-
lent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in
Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41; Taulbee,
1989, “Reynolds Stress Models Applied to Turbulent Jets,” Advances in Turbulence, W.
George and R. Arndt, eds., Hemisphere, New York, pp. 29–73) certainly consistent with
experience, but even so not easy to accept for the turbulence community. Even now the
ideas of asymptotic independence still dominate most texts and teaching of turbulence.
This paper reviews the substantial additional evidence - experimental, numerical and the-
oretical - for the asymptotic effect of initial and upstream conditions that has accumu-
lated over the past 25 years. Also reviewed is evidence that the Kolmogorov theory for
small scale turbulence is not as general as previously believed. Emphasis has been
placed on the canonical turbulent flows (especially wakes, jets, and homogeneous decay-
ing turbulence), which have been the traditional building blocks for our understanding.
Some of the important outstanding issues are discussed; and implications for the future of
turbulence modeling and research, especially LES and turbulence control, are also con-
sidered. [DOI: 10.1115/1.4006561]

Foreword

Over the past two decades, a quiet paradigm shift has been taking
place in our understanding of turbulent flows. It appears, contrary
to long-held beliefs, that the space-time development of turbulence
can be influenced, even asymptotically, by its initial and/or
upstream conditions. Although documented by an increasing num-
ber of researchers and in the most reputable journals, this under-
standing has for the most part not made its way into most of the
recent texts on turbulence. As a result, engineers (and most fluid
dynamicists for that matter) fall into two camps: those few who
have stumbled onto the new way of thinking through their research,
and the great majority who have continued to be trained in the old
way of thinking. Unfortunately, this division considerably compli-
cates communication at almost every level, from the review of
manuscripts for publication and proposals for funding, to even
understanding why certain lines of research should be pursued at
all. It also affects the attitude toward turbulence research in general,
with those educated in the new school finding the field vibrant and
exciting, while the others tending think of it as old and stagnant and
lacking new ideas. Even one of the most important research appli-
cations at the moment, turbulence control, finds itself caught
between two worlds: one world in which control is demonstrated in
at least some circumstances to be possible, and a second world in
which turbulence is believed to be asymptotically independent of

initial conditions, and therefore by definition uncontrollable. But
even those who claim to religiously believe in asymptotic inde-
pendence and teach it in their classrooms often still accept the
money from their sponsors to seek to control turbulence. This con-
fuses both student and sponsor alike, and makes the field appear to
be incoherent – which in fact it is! As a result, opportunities are
lost, new entrants become discouraged and give up, and the field
wobbles forward more like a religion or political philosophy whose
basic tenets have been proven wrong, than a vibrant scientific disci-
pline seeking to increase knowledge and improve application.

This review paper on turbulent shear flows will attempt to show
how the turbulence community came to believe the traditional
views, why those ideas were almost right, and what was wrong
with them. Then it will show how the breakthroughs of two and
one-half decades ago changed things, and continue to do so. Finally
it will try to provide an honest assessment of our understanding
today, and to identify what we would still like to know and how we
might find it. In the absence of firm theoretical foundations, there
would seem to be little point in discussing the many implications
for applications, so I shall for the most part leave those discussions
to those who follow me. Therefore (and upon the advice of a former
Freeman scholar) I shall deliberately restrict the scope of this sur-
vey, and focus only on the question of whether initial and upstream
conditions affect turbulence asymptotically, and what this might
imply about our understanding of turbulence.

Historical Background

The question of whether initial conditions (in time-developing
flows) or upstream conditions (in spatially-developing flows)
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affect turbulence has been of interest for a long time, and in fact
was even the subject of an earlier Freeman lecture by Hussain [1].
In spite of persistent and annoying discrepancies from one experi-
ment to another (e.g., the seeming endless debate about the
spreading rates of jets), almost all of the attention was focused on
turbulence in the early stages of development. There was little se-
rious debate until almost a decade later about whether these
effects persisted asymptotically. And even today, textbooks rou-
tinely ignore the possibility that free shear flows and homogene-
ous flows might be asymptotically different.

The Pandora’s box was opened by Bevilaqua and Lykoudis [2]
who showed very different asymptotic behavior for two different
wake generators, but their results were not widely accepted (e.g.,
Sreenivasan and Narasimha [3]). It was a publication in 1986 of the
careful plane wake experiments of Wygnanski, Champagne, and
Marasli [4] that pretty much shook the foundations of traditional
thinking about turbulence. For more than 50 years the traditional
view (v. almost any book on turbulence, e.g., [5,6]) of turbulence
had been that the wake far downstream from the generator should
depend only on the drag on the wake generator and the downstream
distance from it (measured from some virtual origin). By substitut-
ing screens with the same drag but with differing solidity for an air-
foil or strip, they were able to maintain a constant drag (and hence
fix the crucial scaling parameters). As expected, the mean velocity
profiles beyond an adjustment region collapsed from one generator
to another using only the centerline velocity deficit and a local mea-
sure of the wake thickness as shown in Fig. 1. In fact it was mean
velocity measurements like this in the first place that had led to ac-
ceptance of the view that such free shear flows were asymptotically
independent of upstream conditions. Contrary to all expectations
(see any book on turbulence, even the new ones), they found that
the same collapse could not be achieved for the spreading rate, the
turbulence intensities, nor the Reynolds shear stress (see Figs. 2, 3,
4 and 5). The turbulence intensities and Reynolds shear stress pro-
files could only collapsed for a particular wake generator, and not
with each other. Moreover, the different spreading rates varied by
as much as several hundred percent!

They summarized their findings as follows:

“Sreenivasan and Narasimha [3]) suggested that a unique self-
preserving state exists for all plane wakes and defined the character-
istic constants stemming from their suggestion. We felt at the time
that their data did not fully support their conclusion, and the present
study compiles further evidence negating it…. It was experimentally
observed (by the authors sic) that the characteristic velocity and

length scales…, when suitably scaled by the momentum thickness
and the free-stream velocity, do not exhibit universal behavior and
do depend on the inflow conditions and therefore on the geometry of
the wake generator. The mean velocity profiles for each wake, when
normalized by their own velocity and length scales, are self-
preserving and are also identical for all wake generators. The distri-
butions of the turbulence intensities normalized in the same manner
are almost self-preserving, but they are dependent on the geometry
of the wake generator.”

These new results unequivocally called into question almost a
half century of how we think about and model turbulence. Unless
proven wrong, they clearly invalidated the traditional thinking,
which presumes the asymptotic wake from any wake generator as

Fig. 1 Asymptotic normalized mean velocity profiles of four
different plane wake generators (strip, airfoil and two screens
of different solidity, all with same drag) (from Wygnanski et al.
[4]). Mean velocity normalized with centerline deficit velocity
and lateral coordinate with momentum thickness.

Fig. 2 Plane wake plots showing how spreading rate and cen-
terline velocity decay rate depend on wake generator (squares:
airfoil; triangles: 70% solidity screen; hexagons: solid strip)
and normalized downstream distance from a virtual origin
x ¼ ðx � xoÞ=2h, from Wygnanski et al. [4]

Fig. 3 Downstream variation of centerline plane wake turbu-
lence intensities showing asymptotic dependence on wake
generator (squares: airfoil; triangles: 70% solidity screen; hexa-
gons: solid strip) and normalized downstream distance from a
virtual origin, x ¼ ðx � xoÞ=2h, from Wygnanski et al. [4]

061203-2 / Vol. 134, JUNE 2012 Transactions of the ASME

Downloaded 16 Jul 2012 to 155.198.69.157. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



developing from a point sink of momentum, and thus depending
only on the drag of the generator.

My first introduction to these revolutionary ideas and findings
was a private discussion with Frank Champagne (Professor, Uni-
versity of Arizona) at the Turbulent Shear Flow conference at
Cornell a few years before publication. Like most of the turbu-
lence community I believed their results could not possibly be
correct; and that they had either done something wrong, or had
not simply gone far enough downstream. This argument is still
used by some today in spite of all evidence to the contrary. My
concerns about whether the data satisfied the differential equations
and the homogeneous boundary conditions were met with assur-
ance that they did. The work was ultimately published, not
because the reviewers were particularly happy about the results,

but because of the reputation of the investigators and the evident
(and indisputable) care taken in the measurements.

Almost concurrent with publication was the second important
breakthrough, this time theoretical and my own. In the fall of
1986, I was teaching a class on turbulence at the State University
of New York at Buffalo. A Ph.D. student in the course (Jin-Ho
Lee) asked about why it was reasonable to assume the Reynolds
shear stress to be scaled in a shear flow by the same velocity scale
as the mean velocity profile. Working without my notes, I
answered him by hypothesizing the scales to be different, confi-
dent that I could prove them to be the same. Since the arguments
are both easy to understand and quite crucial to all that follows, I
will repeat them here.

A schematic of the flow under consideration is shown in Fig. 6.
In their simplest form, the Reynolds-averaged streamwise mo-
mentum equation for a far plane wake in a uniform and constant
mean stream can be shown to reduce to [7]

@

@x
ðU � U1Þ ¼

@

@y
h�uvi (1)

where U1 is the free stream velocity. The boundary conditions
are assumed homogeneous except for on the surface of the wake
generator.

Since no forces are assumed to act downstream from the wake
generator, the flow is characterized by a constant kinematic mo-
mentum deficit, i.e.,

Do ¼ U2
1h ¼

ð1
�1

UðU1 � UÞdy � U1

ð1
�1
ðU1 � UÞdy (2)

where qDo is the drag per unit length on the wake generator and
the approximation improves with increasing distance downstream
as the wake spreads and the centerline velocity deficit,
Uo ¼ U1 � Ucl, weakens.

Without loss of generality we seek similarity solutions of the
form

U � U1 ¼ UsðxÞf ðg; �Þ (3)

� huvi ¼ RsðxÞgðg; �Þ (4)

where g ¼ y/d. d ¼ dðxÞ, Us ¼ UsðxÞ and Rs ¼ RsðxÞ are unspeci-
fied scaling functions which vary downstream, but must be deter-
mined from the solution and boundary conditions. The mean

Fig. 4 Plane wake turbulence intensity profiles normalized by
centerline velocity deficit showing dependence on wake gener-
ator and normalized downstream distance from a virtual origin
x ¼ ðx � xoð=2hÞ, from Wygnanski et al. [4]

Fig. 5 Reynolds shear stress normalized by centerline velocity
deficit for cylinder and screen showing dependence on wake
generator, from Wygnanski et al. [4]

Fig. 6 Schematic of far wake showing coordinates and
symbols
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velocity dimensionless profile function, f ðg; �Þ and the dimension-
less Reynolds shear stress function, gðg; �Þ are both functions of
the scaled transverse coordinate, g. The argument, �, represents
any possible dependence on upstream conditions, and must in
principle be retained unless the profile functions can be shown to
be independent of them.

Applying the chain-rule for differentiation and substituting into
Eq. (1) yields the following equation

� U1Us

d
dd
dx

� �
ðgf Þ0 ¼ Rs

d

� �
g0 (5)

where 0 denotes differentiation with respect to g. Note that all of
the explicit x-dependence is the square-bracketed terms. Also note
that to this point, the equations have simply been transformed into
different independent variables, and no assumptions have been
made (beyond those made in writing the original equations).

The whole idea of a similarity solution (of any kind) is that the
profiles themselves become independent of the downstream coor-
dinate. This can happen only if the flow has achieved an equilib-
rium in which the terms in governing equations maintain the same
relative balance as it continues to develop in the downstream
direction. So now we choose to seek solutions which satisfy
exactly this condition, the so-called ‘equilibrium similarity
assumption.’ We need not worry about whether such solutions are
possible, since if the equations do not admit to such solutions,
none will be found. Nontrivial solutions of Eq. (4) can be x-
independent only if the x-dependence of the equation itself van-
ishes. Clearly this is possible only if

U1Us

d
dd
dx

� �
/ Rs

d

� �
(6)

or by simply defining

Rs ¼ UsU1
dd
dx

(7)

In words: the scale for the Reynolds stress scaling functions, Rs must
be proportional to the spreading-rate, dd/dx, of the wake itself!

The classical theory not only assumes independence of upstream
conditions, it also assumes that Rs ¼ U2

s (see, for example, Ten-
nekes and Lumley [6], Townsend [5]). I could not then, nor can I
till this day, make Rs ¼ U2

s , at least without assuming them to be
the same or by making an equivalent assumption somewhere else.
In fact to my surprise, it was not even necessary for Rs and U2

s to
be the same, since a similarity solution can clearly be achieved
without it. And even if they are proportional (as in the infinite
Reynolds number solution), the coefficient need not be universal,
but could depend on the initial conditions [7]. More surprising,
once one relaxed the over-constraint of the classical single-length,
single-velocity scale hypothesis, several new features came to light:
even though the normalized mean velocity profiles could be shown
to collapse independent of upstream conditions, the spreading rates
(see Fig. 1) were in principle dependent on them, as were the higher
turbulence moment profiles (including Reynolds shear stress). It
was recognized almost immediately that this had important implica-
tions for turbulence modeling, and had the consequence that no uni-
versal single point model was possible, since the initial conditions
would appear in the model coefficients [7,8].

This methodology applied to several other example flows was
first presented at an invited session of the American Society of
Civil Engineers meeting in Minneapolis in 19861, and subse-
quently appeared in contributions [7,8] to the volume that came

out of it [9]. Over the next few years, my co-workers and I were
able to apply some of the same general equilibrium similarity2

ideas to several homogeneous flows, including with temperature
fluctuations (George [11], [12]) and mean shear (George and Gib-
son [13]). The conclusions were the same—asymptotic depend-
ence on initial conditions—and generally in agreement with the
available experiments (e.g., Comte-Bellot and Corrsin [14,15],
Wahrhaft and Lumley [16], Rohr et al. [17], Gibson and Kanello-
poulos [18] and others). And even later, Luciano Castillo and I
were able to show theoretically the possibility that the outer (or
main) part of turbulent boundary layers could behave the same
way (v. George and Castillo [19], Castillo and George [20]).

The response of the field throughout the 1980s and most of the
1990s to the experiments, theory and their implications was
largely disbelief, and at best benign disinterest. This situation per-
sisted in spite of publication of the axisymmetric wake experi-
ments of Cannon et al. [21], further plane wake studies by Zhou
and Antonia [22,23], and the DNS studies of Boersma et al. [24]
on turbulent jets. But led by Antonia and his co-workers at the
University of Newcastle in Australia, other investigators began to
notice (or at least report) the same effects in their own work. Since
2000, there has been an ever increasing parade of experimental
and computational results, most finding some asymptotic depend-
ence on initial conditions. Sometimes the effects can be dramatic,
sometimes less so. Oftentimes, the studies were carefully per-
formed and the right questions asked; however, sometimes this
was not the case. In the following sections I shall try to summarize
some of these developments, and try to indicate how future studies
might be more definitive. Over the past 20 years, there have been
literally thousands of papers which have been published about ini-
tial conditions in turbulence. I have restricted attention to those
classes of flows for which equilibrium similarity solutions have
been found, since these most clearly allow distinguishing the roles
of initial (and/or upstream) conditions from other external condi-
tions (e.g., boundary conditions, facility effects, etc.).

Free Shear Flows

Observations in free shear flows have been in the forefront of
those studies of flows for which equilibrium similarity solutions
exist, none more so than the plane wake which began this field of
inquiry. Other free shear flows that have received considerable
attention, both experimentally and numerically, are the axisym-
metric wake and round jet, the latter with and without net mass
flow and swirl. Each of these will be considered below. The zero-
net-mass flow jet and swirling jet will be seen to be of consider-
able importance, since they highlight the importance of scaling
things correctly before a judgment as to the effect of upstream
conditions can be made.

The Plane Wake. Since publication of the Wygnanski et al. [4]
paper, there have been a number of studies which have confirmed
and added to them. The experimental studies of Zhou and Antonia
[22,23], Rinoshika and Zhou [25] are of special interest, since the
authors found essentially the same results in different facilities.
Like the earlier experiments, they found the mean velocity profiles
to collapse when normalized by the local centerline velocity deficit
and the local length scale. Also like the earlier study they found the
Reynolds stress profiles to collapse only for a given upstream wake
generator. Of particular interest was the following observation:

“The difference is especially noticeable between the wake of the
screen and the solid-body wakes. For the screen, the far-field vortices
are highly similar to the near-field ones. For the solid-body wakes,
the far-field vortices bear little resemblance to the near-field vorti-
ces]” [23].

1The session was put together to honor one of my early mentors, Prof. Stanley
Corrsin of the Johns Hopkins University, upon the occasion of his being awarded the
von Kármán medal. Sadly he died a few days before. This work was the subject of
my discussion with him during a visit a few months before his death.

2Note that it was not until 1995 [10] that I introduced the term ‘equilibrium simi-
larity’ to distinguish the methodology from ‘self-preservation’ which seemed to
many people to imply the single-length/single velocity scale hypothesis.
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All of these were consistent with the theoretical arguments
from equilibrium similarity, including the suggestion of Wygnan-
ski et al. [4] and George [7] that it was the large scale motions
that were responsible for the differences.

The equilibrium similarity arguments also received substantial
support from the DNS results of Moser et al. [26] for the unsteady
(or time-dependent) plane wake. In this case, the flow was homoge-
neous in the streamwise and spanwise directions, inhomogeneous
across the wake, and nonstationary in time. Several cases were
computed, one unforced, the other two differently forced at the low-
est wavenumber. These time-dependent wakes grew as expected
from the equilibrium similarity theory at different rates until they
began to exhibit strong roller eddies, indicating the influence of the
finite boundaries. Because of this, departures from the theory were
particularly useful for identifying when the flow computations
began to be influenced by the finite computational region. A second
and more recent paper by Ewing et al. [27] using the same data
showed that that even the two-point statistics behaved as described
by equilibrium similarity. Figures 7 and 9 show the unscaled (raw)
spectral data in physical variables, while Figs. 8 and 10 show the
same data in similarity variables. The authors described their spec-
tral results as follows:

“There appear to be short ranges of k�5=3-range in the spectra from
both wakes. These ranges are of greater extent in the forced wake
because the turbulence Reynolds number of these flow is greater.
The spectra from the forced wake also have a larger energy content
in the low wavenumber region because of the organized structures
present in this wake owing to the initial forcing. The spectra in both
wakes decrease in magnitude and shift to lower wavenumbers as the
wakes evolve, as predicted in the analysis.”

Rogers [28] took the same unsteady time-dependent wake data
and subjected it to ten different straining motions. All of the results
were consistent with equilibrium similarity solutions, suggesting
strongly that if such solutions can be found, they can be realized.
This is, of course, contrary to the conventional wisdom of the day.
Interestingly, Rogers found some of the solutions by postulating an
equilibrium between different groups of terms, groupings consistent
with their order of magnitude and importance.

Finally, and perhaps most interesting of all from the perspective
of this paper, was the time-dependent plane wake LES by Ghosal
and Rogers [29]. By forcing the largest scales they were able to
achieve a variety of growth rates, all consistent with the equilib-
rium similarity solutions, at least until the computation was
affected by the finite size of the computational domain. In particu-
lar, all the mean velocity profiles collapsed together, the Reynolds
normal stresses were distinct for each set of initial conditions, but

the Reynolds shear stress could be collapsed for all cases by using
the growth-rate (as demanded by the theory). This result could be
viewed as a ray of hope in an otherwise ‘inconvenient truth’3,
since it makes it clear that however the turbulence retains

Fig. 7 Streamwise velocity spectra from unforced wake at cen-
terline for four different times during wake decay, from Ewing
et al. [27]

Fig. 8 Normalized streamwise velocity spectra from unforced
wake at centerline and g ¼ r=d1=2 ¼ 0:5, from Ewing et al. [27]

Fig. 9 Streamwise velocity spectra from forced wake at center-
line for four different times during wake decay, from Ewing et al.
[27]

Fig. 10 Normalized streamwise velocity spectra from forced
wake at centerline and g ¼ r=d1=2 ¼ 0:5, from Ewing et al. [27]

3Acknowledgment to Al Gore.
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information on its origins, it is apparently preserved through the
LES closure approximations.

The Axisymmetric Wake. In 1987 at the American Physical
Society meeting in Eugene, OR, I showed my equilibrium similar-
ity analysis of the plane wake to Israel Wygnanski for the first time,
and showed him how it could account for their plane wake observa-
tions. Intrigued, he immediately challenged me to predict the
behavior of the axisymmetric wake experiments that they had al-
ready begun at the University of Arizona. I spent a good bit of the
night pondering the matter and returned the next day with my
response: ‘I think you will see the same strong dependence on the
wake generator, but I really am not sure how rapidly the wake will
decay. There seem to be two solutions: one which decays as x1=2,
and the other classical solution [6] which decays as x1=3. And I am
not sure which solution one might observe in the laboratory, nor
whether one could evolve into the other’ (note that the x1=2 solution
was not the laminar flow solution, although it decayed the same
way, but a fully turbulent low Reynolds number solution). I was
informed that the first part about the initial conditions was correct,
and that the issue of how the wake decayed was exactly the di-
lemma presented by the measurements themselves. So in George
[7] I discussed both possibilities. It was not until many years later,
hindsight being 20:20, that the answer became obvious.

The University of Arizona axisymmetric wake experiments, sub-
sequently reported by Cannon and Champagne [21,30], showed
quite convincingly the expected behavior (see Figs. 11 and 12);
namely, that the upstream conditions affected significantly both the
spreading rates and the nature of the coherent structures. Like the
plane wake and as expected from the theory, the mean velocity pro-
files also collapsed from all experiments. Figures 13 and 14 show
the mean velocity profiles from the disk experiments of Cannon
[30] and as well that of Ref. [32]. But the Arizona data was incon-
clusive for choosing between the two alternatives for the decay of
the centerline velocity deficit and the spreading rate. It was not until
a decade later that the experiments of Johansson et al. [31] and
Johansson and George [32] that it became clear exactly what was
happening. In fact, unlike the plane wake and axisymmetric jet

flows, the local Reynolds number for the wake, say, Uod/�, is not
constant, but drops slowly. So no matter how high the Reynolds
number at the axisymmetric wake generator, nor how unimportant
the viscous terms actually are in either the equations for the mean
flow or turbulence near the generator, they eventually grow back
into both as the wake decays, especially the latter. At very high ini-
tial Reynolds number, the wake centerline velocity deficit decays
as Uo / x�2=3 and the wake width grows as d / x1=3, exactly like
the classical solution except for the dependence of the coefficients
on the wake generator. But contrary to the earlier view that the
wake simply laminarizes, it falls into a second equilibrium similar-
ity state, a low-Reynolds number turbulent state if you will, in
which the centerline velocity deficit decays as Uo / x�1 and the

Fig. 11 Far wakes from four different wake turbulence genera-
tors from Cannon et al. [21] showing strong dependence of
large scale features on generator even far downstream. From
top: screens of solidity 0.50, 0.60, 0.85 and solid disk, all at
Reynolds number based on free stream velocity and momen-
tum thickness of approximately 3500.

Fig. 12 Cross-stream length scale, d�=h versus x=h. For the
screen wakes, the porosity is defined as r 5 (solid area)/(total
area). From Johansson et al. [31].

Fig. 13 Mean velocity deficit profiles, disk data from Cannon
[30]

Fig. 14 Mean velocity profiles, disk data from Johansson and
George [32]
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wake spreads as x1=2. In this state the viscous stresses and viscous
transport terms in the Reynolds stress equations remain as impor-
tant as the Reynolds stress production, which keeps producing tur-
bulence energy by working against the mean flow gradient. So even
though the wake gets weaker and weaker, its dynamics are still
fully turbulent. Since one can never really have an infinite Reynolds
number in an experiment or simulation, nor are wind tunnels long
enough to reach the viscous-dominated state, the typical experiment
finds itself between these extremes: hence the dilemma of Cannon
[30] in establishing exactly what the power law dependence was
from experimental data alone.

In fact the second solution has only been truly observed in the
very long time time-dependent-wake DNS of Gourlay et al. [33]
(see also Johansson et al. [31]). Figures 15 and 16 illustrate the
high Reynolds number solution using experimental data from
behind a disk by Johansson and George [32]. These data are char-
acterized by a k�5=3 range in the velocity spectra, indicating
clearly the high Reynolds number nature of the solution which is
based on the idea that the dissipation can be approximated as
e / u3/d. The high Reynolds number solution also appears ini-
tially in the DNS data of Gourlay et al. [33], but it eventually
evolves to the low Reynolds number solution shown in Figs. 17
and 18. Note the extremely large values of x/h at which the low
Reynolds number appears. For this region there is no k�5=3 range
in the velocity spectra, consistent with the low Reynolds number
approximation used for the dissipation, e / �u2/d2.

Jets

Overview. Jets, like those shown in Fig. 19, are often created
by flow exhausting from nozzles. Typically they go through an
adjustment region that can be from a few to many diameters (for

high Mach number and/or low Reynolds number flows) before
they reach an asymptotic state. The most interesting cases theoret-
ically, at least from the perspective of this article, are those
exhausting into a quiescent environment. This is because these are

Fig. 15 Spreading rate for the high Reynolds number axisym-
metric disk wake of Johansson and George [32]. Cross-hatched
region shows approximate lower limit of validity of infinite
Reynolds number solution.

Fig. 16 Centerline velocity deficit decay rate for the high Reyn-
olds number axisymmetric disk wake of Johansson and George
[32]

Fig. 17 Spreading rate for low Reynolds number axisymmetric
wake from DNS of Gourlay et al. [33]. Note the extremely large
values of x=h at which the low Reynolds number solution is
observed, from Johansson et al. [31].

Fig. 18 Centerline velocity deficit for low Reynolds number
axisymmetric wake from DNS of Gourlay et al. [33]. Note the
extremely large values of x=h at which the low Reynolds num-
ber solution is observed, from Johansson et al. [31].

Fig. 19 Florescent dye visualizations of zero-net-mass-flux jet
(above) and steady jet (below) showing 30% difference in as-
ymptotic spreading rates, from Cater and Soria [36]
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the only external conditions for which equilibrium similarity solu-
tions (or even the classical self-preserving solutions) are possible.
And in fact, this was one of the flows considered theoretically in
my original article [7]. For the high Reynolds number top-hat exit
profile jet (uniform flow across the exit plane) at low Mach num-
ber, it usually takes about 30 exit diameters before the asymptotic
state is reached (see Panchepakesan and Lumley [34] and Hussain
et al. [35]), so it is these asymptotic jets that will be primarily con-
sidered here.

The theoretical conclusions from equilibrium similarity consid-
erations quite simply were very much like the other flows consid-
ered above: the asymptotic spreading rates reflected the source
conditions, mean velocity profiles from different source condi-
tions collapsed when plotted using the centerline velocity, Uc, and
any appropriate width defined from the profile itself (like the half-
width, d1=2); the Reynolds stress profiles from different source
conditions collapsed when normalized using U2

c dd1=2/dx, and
there was no reason to expect any of the other statistical properties
from different sources to collapse at all. While there was no sys-
tematic evidence available at that time to support these deduc-
tions, it was argued that the inability of the community to agree
on the rate at which axisymmetric jets actually spread was proof
in itself, since no two experiments have precisely the same exit
conditions. These arguments were refined in the appendix of Hus-
sain et al. [35] and extended to plane jets in George [10].

One of the most dramatic and early experimental demonstrations
of the role of upstream conditions on jets was the blooming jet
experiments carried out at Stanford by Parekh et al. [37]. By forcing
the jet exit periodically they were able to actually make the jet
bifurcate into two separate streams, each resembling a single jet.
Less dramatic were a number of experiments published subsequent
to 1986 arguing for the role of exit conditions on the initial spread-
ing rates of ordinary (steady in the mean) jets, e.g., Russ and Stry-
kowski [38]). And there have been many since, e.g., the numerical
studies of Grinstein [39,40], the swirling jet studies of Gilchrist and
Naughton [41] to cite but a few. But, as noted in the introduction, it
was not until the DNS jet studies of Boersma et al. [24] at the Tech-
nical University of Delft that the first systematic studies of the as-
ymptotic jet began to appear. These DNS were carried out at
relatively low Reynolds number, but the authors did not hesitate to
draw conclusions from them. Quoting from their paper:

“The results obtained from the DNS with a top-hat initial velocity
profile show excellent agreement with the available experimental
data of Panchapakesan and Lumley [34] and Hussein et al. [35]. The
comparison of the results found with the two different initial profiles
was used to check the hypothesis of universal self-similarity of a jet.
The results do not support universal self-similarity. However, when
we use the alternative scaling proposed by George [7] in which a de-
pendence of the similarity on the initial conditions is kept, the agree-
ment between both simulations becomes much better. Therefore we
agree with George and conclude that the difference between data
obtained in various jet experiments found in the literature may not be
solely due to experimental errors but may for a large part be attrib-
uted to an incorrect scaling” (Boersma et al. [24]).

Published almost simultaneously was the experimental study,
also carried out at Delft, using PIV (particle image velocimetry)
of a low Reynolds number jet (2000) by Fukushima et al. [42]
which showed a substantially lower spreading rate than jets at
higher Reynolds number (see also Ewing et al. [43]), consistent
with the arguments in the appendix of Hussein et al. [35] that
source Reynolds number might be important, especially if very
low. Also, experimental studies at the University of Adelaide of
the passive scalar field in top-hat and pipe flow jets by Mi et al.
[44] showed evidence of the effects of the source conditions on
the asymptotic spreading rates. These were followed by a number
of experiments, all claiming to have demonstrated the effect of
source conditions and testing various aspects of the George [7]
theory, confirming parts, but sometimes questioning others (e.g.
Xu and Antonia [45,46], Burattini and Djendidi [47], Burattini

and Antonia [48]. In their conclusions Xu and Antonia [45] sum-
marize their results quite nicely and place them in the perspective
of earlier studies:

“In the present paper, the characteristics of a jet issuing from a
smooth contraction nozzle were compared with those of a jet that
exits in a fully developed turbulent state from a long pipe. The
measurements in the contraction jet are in good agreement with
available data (Hussein et al. [35]; Panchepakesan and Lumley [34]).
The decay rate of the centerline mean velocity and the growth rate of
the jet half-width agree with those of Ferdman et al. [49] for the pipe
jet. They found that the far-field decay rates of the pipe jets are
smaller than those with an initial top-hat velocity distribution. How-
ever, they concluded that the pipe jets develop into a self-
preservation state more rapidly. The present results for the mean ve-
locity and Reynolds stresses indicate that the contraction jet develops
more rapidly than the pipe jet, the former flow approaching self-
preservation more rapidly than the latter. The differences are associ-
ated with differences in turbulence structure in both near and far
fields of these two flows. Spectra of t indicate significant differences
in the near-field structures. For x > 3d, the spectral peak always
occurs at a lower frequency in the pipe jet than in the contraction jet.
For x � 3d, the peak is nearly at the same frequency” (from Xu and
Antonia [45]).

And another interesting observation comes from the paper of
Burattini and Djendidi [47], which deals with the speculation as to
how source conditions might have an effect far downstream:

“An interesting discussion on the effects of the coherent structures in
the context of self-similarity was reported by George [7]. He noted
that the evolution of the shear layer is dominated by a sequence of
instabilities, each one triggered by the preceding one. He thus argued
that the final possible self-similar state is influenced by the manner
in which the flow was initiated, i.e., the initial conditions. Our results
appear to corroborate George’s arguments. Indeed, the introduction
of the grid at the jet exit interferes with the sequence of instabilities
and helps the flow to settle more rapidly towards a self-similar state”
(Burattini and Djendidi [47]). Clearly this is still speculation, but it
at least suggests a direction toward understanding why things are the
way we find them.

It must be noted, however, that the asymptotic jet is relatively
insensitive to changes in the exit profile, with differences in
spreading rate typically being about 10–15%. This can be con-
trasted with the wake experiments cited above where the differen-
ces were measured in hundreds of percent. Thus all of the effects
that make the measurement of free shear flows difficult in the first
place (e.g., George [50]) make it truly difficult to establish
unequivocally that source conditions have made a difference for
the round jet. Therefore it is particularly important that compari-
sons be made appropriately. For example, what exactly is the
‘equivalent’ diameter of a pipe flow jet relative to that of a top-hat
jet? Or what would be the ‘velocity’ corresponding to the top-hat
exit velocity, say Uj, if there is a velocity profile at the exit?
Surely not just the velocity maximum. As shown in the next sec-
tion, the answer lies in considering integral parameters instead of
simply picking parameters of convenience.

Some Scaling Issues: Mass, Buoyancy and Swirl. This ques-
tion of finite sources was addressed in George [7] where it was
argued that real jets were intrinsically multilength scale phenom-
ena since they add both mass and momentum at the source, and
from these intrinsic length scale and velocity scales could be
defined. For example, if qmo is the rate at which mass is added at
the exit plane of the jet source, and qMo is the rate at which
momentum is added, then the intrinsic length scale is

D� ¼
mo

M
1=2
o

(8)

And the intrinsic velocity scale is given by
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U� ¼
Mo

mo
(9)

For a jet (which is driven by momentum), D� provides a measure
of how rapidly the mass added at the source is overwhelmed by
that which is being continuously entrained as the flow evolves
downstream. Thus, in effect, D� and U� provide the calibration
against which development must be measured. Note that it was h
and U1 that played these roles for the wake considered above.
The diameters of the wake generator themselves in fact varied
greatly, even though the momentum thickness, h, was held
constant.

It is easy to show that if the exit profile is a top-hat and the jet
diameter is D, then D� ¼

ffiffi
p
p

2
D and U� ¼ Uj. Hence for a top-hat

jet, D and Uj are the appropriate parameters to measure its devel-
opment. But the important point of particular relevance here is
that for any jet for which the exit profile is not a top-hat, the
proper way to evaluate the effect of exit conditions is to compare
plots of U/U� versus y/D�. Unfortunately, in at least some of the
experiments earlier cited this was not done. Therefore some of the
results might need to be reinterpreted. The exceptions are the
experiments of Cater and Soria [36] and Shiri et al. [51], which
will be discussed in detail below.

But before proceeding though, note that similar issues arise
when buoyancy and swirl are added at the source. First consider
buoyancy which is presumed to be added at the exit plane at a rate
of qFo. This together with the rate at which momentum is added
at the source, qMo, introduces another length scale, the so-called
‘Morton’ length scale (Morton [52]) defined by

LM ¼
F3=4

o

M
1=2
o

(10)

Just as D� provides a measure of how fast a jet driven by momen-
tum develops, LM measures how rapidly a plume produces new
momentum through buoyancy to overwhelm the rate at which mo-
mentum is added at the source. This can be very important in
designing experiments and for interpreting results (see Kotsovinos
and List [53], Baker et al. [54], Shabbir and George [55]).

Another length scale arises if there is swirl at the jet exit
because of the angular momentum which is being added to the
flow. If qGo is the rate at which angular momentum is being
added, the corresponding swirl length scale is defined by Shiri
et al. [51] as

Ls ¼
Go

Mo
(11)

Both linear and angular momentum must be conserved in the jet
exiting into quiescent conditions, but the actual mean azimuthal
velocity falls off more rapidly than that does the streamwise ve-
locity (see Ewing [56]). As demonstrated below (and by Shiri
et al. [51]), Ls provides a measure of the distance over which this
happens and over which swirl appears to disappear. And the
so-called “swirl number,” S ¼ 2Go=MoD, is just the ratio of this
length scale to that over which the entrained mass dominates the
rate at which mass was added initially. Clearly in light of the
above, a more appropriate definition of swirl number would be

S� ¼
ffiffiffi
p
p Go

MoD�
(12)

where the factor of
ffiffiffi
p
p

has been added to make it reduce to the
usual swirl number for top-hat jets.

The net effect of all three length scales, D�, LM, and Ls, is to
displace the effective origin of the flow, (i.e., the virtual origin)
and ‘stretch’ it. As will be illustrated below for the swirling jet of
Shiri et al. [51], failure to account for this shift can be misinter-
preted as an extra (and extraneous) effect of source conditions on

the growth rate and other development measures. The zero-mass-
flux-jet is also of particular interest since it has no mass flux at all
on the average (mo ¼ 0), but only an initial momentum, Mo. Thus
it truly has only a single length scale, x, the distance downstream.

The Swirling Jet. The swirling jet experiments of Shiri et al.
[51] provide an excellent example of the perils presented by not
taking into account the considerations above when making com-
parisons. These experiments were conducted using burst-mode
LDA at Chalmers in the relatively high Reynolds number
(100,000) jet facility originally used by Hussein et al. [35], but the
settling chamber was modified to introduce swirl using injectors
in the manner of Gilchrist and Naughton [41]. Swirl at the jet exit
has been known for some time to affect the initial development of
the jet and enhance mixing (e.g., Chigier and Chervinsky [57],
Farokhi et al. [58], Gilchrist and Naughton [41]). Therefore it was
reasonable to assume that swirl was the perfect candidate to try to
influence the far field as well. And indeed this appeared to be con-
firmed. The usual plots of jet half-width normalized by diameter,
d1=2/D, and maximum exit velocity normalized by the local cen-
terline velocity, Umax/U, versus x/D showed a clear departure
from the non-swirl case for the S ¼ 0:25 experiment. We were
worried a bit, however, about the exit velocity profiles shown in
Fig. 20, which were slightly modified from their original very-
near top-hat form by the swirl generator and the swirl itself.

So the exit profiles were carefully remeasured, and the parame-
ters mo, Mo, and Go determined from them by integrating the
appropriate profiles. Then the values of D� and U� (using Eqs. (8)
and (9)) were computed for each experiment. Plots of d

1/2
/D� and

U�/Uc versus x/D� are shown in Figs. 21 and 22. Clearly, and to
our considerable surprise, there were no significant differences in
the asymptotic spreading or the centerline decay rates. Only the
virtual origin was shifted for the S ¼ 0:25 case.

Figure 23 shows the normalized mean velocity profiles for all
three experiments. These results are as expected, since even if
source conditions mattered these profiles should be identical from
the equilibrium similarity arguments (see Ewing [56], see also
Shiri et al. [51]). Consistent with the spreading rates and center-
line velocity decay was that the turbulence intensities also showed
little difference except for the downstream distance required for
development as shown in Fig. 24. In fact, all other velocity
moments were nearly indistinguishable from each other, and as
well from those of Hussein et al. [35]. Subsequent experiments
reported by Shiri et al. [59,60] measuring moments to the fourth
order also showed no effect of swirl.

Fig. 20 Axial (rightmost) and tangential (leftmost) velocity pro-
files for swirling jet at the jet exit at three different swirl number
(S ¼ 0, 0.15, and 0.25)
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The Zero-Net-Mass-Flux Jet. As is clear from the photo-
graphs of Fig. 19 there are in fact real differences between the
zero-net-mass-flux jet and the steady jet. The experiments were
carried out using PIV at Monash University by Cater and Soria
[36] using a pulsed jet created with a piston, so that positive parts
the cycle very closely balanced the negative part of the cycle. But
even though there was no net mass added to the flow over a cycle,
there was a source of momentum since negative momentum going
backwards has the same sign as positive momentum going for-
wards. They summarized their results as follows:

“In summary, the reason that zero-net-mass-flux (ZNMF) jets spread
differently throughout the domain is due to structural differences in
the near field. Although, the shape of the mean velocity profiles is
similar to a continuous jet in the far field, the mean streamwise
gradients are different…This leads to the non-universality of con-
stants in similarity solutions for turbulent jets across different veloc-
ity profiles, as well as the source Strouhal number dependence of the
jet statistics” (From Cater and Soria [36]).

Plots of the downstream development of the jet half-width and
profiles of mean velocity are shown in Figs. 25 and 26.

The ZNMF jet half-width spreads about 30% faster than the
steady jet, and the corresponding velocity profile is considerably
wider. At first glance, this appears to violate the equilibrium simi-
larity argument that the mean velocity profiles should be the
same, but it does not. The velocity profile was not plotted by the
authors as a function of r/d1=2 but instead as a function of r/x, thus
emphasizing the actual physical spread of the jet. Figure 27 shows
profiles of the streamwise component of the Reynolds stress nor-
malized by the square of the centerline velocity (square of turbu-
lence intensity), and compares it to other jets. Clearly the pulsed
jet turbulence intensities are substantially higher, as might have
been expected given its pulsatile nature.

Nonstationary Homogeneous Turbulence

Background. To this point all of the free shear flows we have
considered have been stationary random processes (i.e., statistics
independent of origin in time), but inhomogeneous in at least one
space dimension. Now we consider the opposite: flows that are
nonstationary so their statistics change with time, but are homoge-
neous in space. Homogeneous turbulence may seem even more
esoteric for engineers than the free shear flows discussed earlier in
this article. Yet many of our ideas about the dynamics of turbu-
lence started with these flows, and all of the engineering turbu-
lence models depend on them. The simplest example is the
familiar relationship used in all models in one form or another,
e / u3/L, where e is the rate at which turbulence energy, 3u2/2, is
dissipated and L is presumed to bear some relation to the integral
scale. Not only is it often assumed that this relationship is valid, it

Fig. 21 Streamwise variation of the half-width for swirling jet
experiments plotted as d1=2=D� versus x=D�

Fig. 22 Streamwise variation of centerline mean velocity for
swirling jet experiments plotted as U�=Uc versus x=D�

Fig. 23 Mean stream-wise velocity profiles for swirling jet
experiments at different axial position for the three different
cases: (a) S 5 0, (b) S 5 0.15, (c) S 5 0.25. The profiles have been
normalized by the local mean centerline velocity, Uc , and the
half-width, d1=2.

061203-10 / Vol. 134, JUNE 2012 Transactions of the ASME

Downloaded 16 Jul 2012 to 155.198.69.157. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



is often also assumed the coefficient of proportionality is univer-
sal. It is easy to see from one of the flows we considered earlier
that this cannot be true in general. Consider this: the integral scale
can be shown to be proportional to the value of the one-
dimensional spectrum divided by the energy u2 in the limit as the
wavenumber goes to zero. The spectra of the time-dependent
wake shown earlier (Figs. 7–10), however, showed the lowest

(and most energetic) values of the spectrum to have been the most
influenced by the initial conditions. The highest wavenumbers
which dominate the dissipation, however, were minimally influ-
enced by the initial conditions. Thus the ratio, eL/u3, must also
depend on the upstream conditions. The point is that once we
open the Pandora’s box of possible dependence on upstream con-
ditions, much of what we have believed to be true about turbu-
lence must be seen to be as at best an approximation. Nowhere, it
seems, is this more true than for nonstationary homogeneous
turbulence.

The oldest example of an nonstationary homogeneous turbu-
lence is simply turbulence which decays in the absence of all spa-
tial gradients of mean quantities. An experimental approximation
to this homogeneous decaying turbulence is the turbulence gener-
ated downstream of a grid in a wind tunnel. Because of the low
turbulence intensity (and the negligibility of the streamwise turbu-
lence transport terms), Taylor’s frozen field hypothesis can be
invoked locally so that time, t, can replaced by distance down-
stream divided by the tunnel speed, x/U. The early measurements
of Batchelor and Townsend [62] seemed to confirm the von Kar-
man and Howarth [63] theory of self-preservation in which the
energy decayed as u2 / t�1. But almost none of the other experi-
ments could replicate these results; and it was this problem that
was a major reason for the construction of what is now referred to

Fig. 24 RMS stream-wise velocity for the swirling jet experi-
ments at different axial position for the three different cases: (a)
S 5 0, (b) S 5 0.15, (c) S 5 0.25. The profiles have been normal-
ized by the local mean centerline velocity, Uc , and the half-
width, d1=2.

Fig. 25 Half-widths normalized by jet exit diameter versus x=D
for the ZNMF jet (squares) and steady jet (circles), compared to
that of Hussein et al. [35](- - -) from Cater and Soria [36]

Fig. 26 Mean velocity profiles from ZNMF jet (squares) and
steady jet (circles) normalized by centerline velocity, from Cater
and Soria [36]. Solid line is from pulsed jet of Bremhorst et al.
[61]. Dashed line is typical steady jet.

Fig. 27 Streamwise component of Reynolds stress from ZNMF
jet at two different Strouhal numbers, 0.00072 (squares) and
0.0015 (circles) compared to that of Hussein et al. [35] (- - -),
from Cater and Soria [36]
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as the Corrsin Wind Tunnel at the Johns Hopkins University.
Using this tunnel, Comte-Bellot and Corrsin carried out an exten-
sive series of experiments which are reported in Refs. [14,15].
They also summarized the results of the experiments of others
prior to 1966. With a single exception, none of the results showed
the turbulence decaying as t�1, but in fact as a noninteger power
of time: u2 / tn where n < �1 (the exception was the Kistler and
Vrebalovich [64] experiment which was carried out in a wind tun-
nel that was destroyed immediately thereafter, so the results could
never be confirmed). To this day, it seems to be commonly
believed that the Comte-Bellot and Corrsin experiments produced
a single universal value for the decay parameters, usually some-
thing near n � �1:28. But in reality it was only for the square bar
grids that this result was achieved. In fact values of n varied from
about �1.1 to �1.5, depending on the precise geometry of the
grid and the tunnel speed. The mythology of a universal value of
n seems to have been fed as much by desires of the turbulence
community for universality as by the data, and especially by the
turbulence modelers who at least in the 1970s and 1980s were still
hoping for universal modeling constants (note that their Ce1

, in
particular, is directly determined by n, since power law decay
implies that Ce1

¼ ðn� 1Þ=n, see Reynolds [65]). As a conse-
quence, experimentalists (using both laboratory and DNS) have
continued to search for the elusive universal value of n, hoping
eventually to find that it does not depend on the upstream condi-
tions. There has, however, been considerable debate as to how
and whether it is influenced by the degree of anisotropy present.
And there has even been debate about whether n itself varies
during decay as a function of the local Reynolds number.

My own special interest in decaying turbulence began in the
spring of 1987 when I was teaching a second advanced turbulence
course at the State University of New York at Buffalo. As we dis-
cussed the von Karman and Howarth self-preservation theory for
decaying isotropic turbulence, one of the students, (James Son-
nenmeier) who had been in the aforementioned earlier class the
semester before remarked, “Are we going to disprove this theory
too?” Almost simultaneously everyone at the table realized that it
had indeed been over-constrained as well.

Here is the crux of the arguments first published in George [7]
(see George [11] for a more comprehensive presentation). Begin
with the spectral energy equation for decaying homogeneous tur-
bulence given by

@E

@t
¼ T � 2�k2E (13)

where Eðk; tÞ is the three-dimensional energy spectrum function,
Tðk; tÞ represents the nonlinear transfer processes removing or
adding energy at a given wavenumber, k, and � is the kinematic
viscosity (v. Batchelor [66], Tennekes and Lumley [6], Monin and
Yaglom [67]. Eðk; tÞ has been obtained by integrating the three-
dimensional spectrum over spherical shells of radius k ¼ j~kj,
which has in turn been obtained by taking the three-dimensional
transform of the two-point velocity correlation tensor (it is a com-
mon misconception that this equation is only valid for isotropic
turbulence, but in fact only homogeneity is required).

The nonlinear spectral transfer term Tðk; tÞ, is deceptively sim-
ple, but accounts for the net effect of all the nonlinearity of the
Navier-Stokes equations. For homogeneous turbulence these can
be characterized as being entirely due to interactions among triads

of wavenumbers, say ~k; ~k0 and ~k00 ¼ ~k0 � ~k as illustrated in Fig. 28.
It is the interactions of wavenumbers that are nearly of the

same size which dominate the energetics of the turbulence. And at
high Reynolds numbers, it is these interactions among wavenum-
bers of nearly the same size in the range of wavenumbers that are
larger than those containing most of the energy yet still smaller
than those doing most of the dissipation that are largely responsi-
ble for what is often referred to as the ‘energy cascade.’ As noted
by Ref. [6] (see also Ref. [68]), however, this ‘cascade’ is at best
a rather ‘leaky one’.

While quite useful for theoretical analysis, Eðk; tÞ can almost
never be obtained experimentally4. Nonetheless, with the assump-
tion of isotropy (v. Ref. [67].), Eðk; tÞ can be related to the more
accessible whole-line one-dimensional streamwise velocity spec-
trum, F

ð1Þ
1;1 (or F

ð1Þ
2;2) by

Eðk; tÞ ¼ k3 @

@k

1

k

@F
ð1Þ
1;1ðk; tÞ
@k

" #
(14)

¼ k2
@2F

ð1Þ
2;2ðk; tÞ
@2k

� k
@F
ð1Þ
1;1ðk; tÞ
@k

(15)

where

F
ð1Þ
1;1ðk1Þ ¼

1

2p

ð1
�1

e�k1rhu1ðx1; x2; x3Þu1ðx1 þ r; x2; x3Þidr

¼ 1

2

ð1
k1

Eðk; tÞ
k3
½k2 � k2

1�dk (16)

F
ð1Þ
2;2ðk1Þ ¼

1

2p

ð1
�1

e�k1rhu2ðx1; x2; x3Þu2ðx1 þ r; x2; x3Þidr

¼ 1

4

ð1
k1

Eðk; tÞ
k3
½k2 þ k2

1�dk (17)

Note that the subscripts on the one-dimensional spectra indicate
the velocity components, while the superscript indicates the direc-
tion over which the corresponding two-point correlation functions
are measured (e.g., hu1ðx; y; z; tÞu1ðxþ r; y; zÞi or hu2ðx; y; z; tÞ
u2ðxþ r; y; zÞi, or equivalently, the components of the three-
dimensional spectrum in vector space, ðk1; k2; k3Þ which are not
integrated over to produce it.

The integral of Eðk; tÞ overall wavenumbers is the turbulence
kinetic energy; i.e.,

1

2
huiuii ¼

3

2
t2 ¼

ð1
0

Eðk; tÞdk (18)

while the integral of the one-dimensional spectra over the whole
line yields only the component variances; i.e.,

hu2
ai ¼

ð1
�1

Fð1Þa;aðk1; tÞdk1 (19)

where there is no summation on a.
Also the integral of 2�Eðk; tÞ is the rate of energy dissipation

per unit mass, e; i.e.,

Fig. 28 Sketches illustrating three of the triply infinite number
of nonlinear triadic interactions that comprise homogeneous
turbulence

4The exception to this are DNS results which can be thought of as numerical
experiments. More will be said on this later.
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e ¼ 2�

ð1
0

k2Eðk; tÞdk (20)

which, if one can assume isotropy, corresponds to

e ¼ 15�

ð1
�1

k2
1F
ð1Þ
1;1;ðk1; tÞdk ¼ 15�

@u1

@x1

� �2
* +

(21)

Note that e is often called simply the dissipation. Similar equiva-
lences can be derived for any quantity derivable from either the
three-dimensional spectrum function, Eðk; tÞ, or the one-
dimensional spectra, but again with the assumption of isotropy. It
is this fact that in part explains what some engineers might
describe as the ‘fixation’ of the turbulence community on isotropic
flows: without this assumption we have only very limited tools to
compare theory to experiment.

Thus any theoretical deduction or scaling law derived for the
three-dimensional energy spectrum function, Eðk; tÞ can readily
be applied to the one-dimensional spectra, at least with the
assumption of isotropy. One confusing and misleading feature of
the one-dimensional spectra, however, is that they do not go to
zero for low wavenumbers, but (as noted above) are in fact pro-
portional in the limit as k1 ! 0 to the product of the component
energy and the integral scale, v. Ref. [6]. Another is that any filter-
ing applied to one direction (say by finite probe size) shows up
not just at large wavenumbers (or frequencies) but at all,
v. Ref. [69].5 Both of these effects are because of the aliasing of
information from the other two directions, say k2 and k3 into the
k1 direction. In spite of these annoying features, in the absence of
good alternatives, one-dimensional spectra remain a primary tool
for experimentalists.

Now back to our immediate problem: the basic idea is to again
seek an equilibrium similarity solution to Eq. (13). First transform
the equations by seeking solutions of the form

Eðk; tÞ ¼ Esðt; �ÞFðk; �Þ (22)

Tðk; tÞ ¼ Tsðt; �ÞGðk; �Þ (23)

where k ¼ kLðtÞ. The scaling functions, Esðt; �Þ, Tsðt; �Þ, and the
length scale, Lðt; �Þ, are functions of time and initial conditions
only, and cannot be specified arbitrarily but must be determined
from the equilibrium similarity hypothesis. The dimensionless
spectrum, Fðk; �Þ, and spectral transfer function, Gðk; �Þ, are func-
tions of only the nondimensional wavenumber, k and any residual
initial conditions effects denoted by *. Applying the chain-rule
and substituting into the spectral energy equation yields

dEs

dt

� �
Fþ Es

L

dL

dt

� �
kF0 ¼ Ts½ �G� 2

�Es

L2

� �
k

2
F (24)

where the 0 denotes differentiation with respect to k. Thus, we
have achieved a separation of variables in which all of the explicit
time-dependence is in the square-bracketed terms, and all of the
dependence on dimensionless wavenumber is outside of them.

It is here that the equilibrium similarity hypothesis is invoked:
we ask whether solutions can exist for which all the bracketed
terms have the same time dependence. And in fact there are if the
following conditions can be satisfied

1

�L

� �
dL

dt

� �
¼ A (25)

L2

�Es

� �
dEs

dt

� �
¼ B (26)

L2Ts

�Es

� �
¼ C (27)

where A ¼ Að�Þ, B ¼ Bð�Þ and C ¼ Cð�Þ are at most constants
that depend on the initial conditions.

It is easy to show by substitution into the energy and dissipation
integrals that the length scale, L, can be taken equal to the longitu-
dinal integral scale, L11, defined from the longitudinal streamwise
correlation, BLLðrÞ ¼ huðx; y; z; tÞuðxþ r; y; z; tÞi, as

L11 ¼
1

hu2
1i

ð1
0

BLLðrÞdr ¼ lim
k1!0

p
hu2

1i
F
ð1Þ
1;1ðk1Þ (28)

Or equivalently for isotropic turbulence from Eðk; tÞ it is given by

L11 ¼
p

2t2

ð1
0

Eðk; tÞ
k

dk (29)

Alternatively L can be taken equal to the Taylor microscale, k,
defined by

k2 ¼ 15�
t2

e
(30)

Whichever is chosen is irrelevant from a theoretical perspective,
since the consequences of equilibrium similarity demand they
remain proportional during decay. In fact, it is this constant ratio,
L11/k, during decay that is most representative of the real Reynolds
number characterizing the turbulence. As a practical matter, the bet-
ter choice is usually k since it is less influenced by the finite bounda-
ries of experiments and simulations (v. Wang and George [70]).

The scale functions, Esðt; �Þ and Tsðt; �Þ, can now be deter-
mined without loss of generality to be

Esðt; �Þ ¼ t2k (31)

Tsðt; �Þ ¼
�t2

k
(32)

It follows immediately from the conditions for equilibrium simi-
larity that the turbulence can be deduced to decay as a power law
in time; i.e.,

t2

t2
ref

¼ t� to

tref � to

� �n

(33)

where to represents a virtual origin, and the exponent, n ¼ nð�Þ, is
a negative constant and at most a function of the initial conditions.
Note that prior to this result, Eq. (33) was always believed to be
an empirical law, at least for n 6¼ �1. Clearly this is not the case.

To say that these ideas were less than enthusiastically received
by the turbulence community would be an understatement6. There
were indeed some legitimate concerns about how well the theory
described all features of the experimental and DNS data, some of
which are still being debated and researched today. The new
theory was, on the other hand, able to make some remarkable pre-
dictions consistent with the observations, including a power law
decay with the decay exponent different from �1 and dependent
on the initial (or upstream) conditions. Most of these were pre-
sented in detail in George [11].

But the real problem presented by the work was that it chal-
lenged much of what the turbulence community had come to
believe about turbulence in the preceding four decades, in part
because of the well-documented failures of the von Karman and
Howarth self-preservation theory for decay [63,67,71]. In
particular:

5These effects are commonly hidden by plotting the so-called ‘pre-multiplied’
spectra, which are obtained by multiplying the one-dimensional spectra by
wavenumber.

6The paper finally published as George [11] was resubmitted 8 times and
reviewed 26 times before being ultimately published in 1992.
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First, the new theory argued that initial conditions might be
(and probably were) important for decaying turbulence, con-
trary to what had long been believed.

Second, it declared that at least some turbulence could be
described by a single length scale, contrary to all conven-
tional wisdom since Batchelor [71].

Third, it argued that in fact the appropriate length scale was the
Taylor microscale. As shown in Figs. 29 and 30, the well-
established one-dimensional spectral data of Comte-Bellot
and Corrsin [15] plotted in Taylor variables collapsed at all
scales quite spectacularly, and to different curves for differ-
ent initial (or upstream) conditions. Nonetheless, this was
contrary to all thinking at the time which believed that the
Taylor microscale could only be interpreted as a time scale
(in conjunction with the turbulence intensity), see, for exam-
ple, Tennekes and Lumley [6].

Fourth, it argued that the derivative skewness (which measures
the production of dissipation and mean square vorticity)
increased during decay as the local Reynolds number
decreased, and in fact was predicted to vary inversely with
Rk. This was contrary to the usual assumption since Batche-
lor and Townsend [72] that the derivative skewness was
constant during decay, in spite of considerable evidence to
the contrary that it increased (e.g. Refs. [62,73–75]. As a
case in point, some of this data is replotted in Fig. 31. The
theory also appeared to contradict all the arguments for
increasing internal intermittency with increasing Reynolds
number (e.g., Ref. [76]), which would cause the opposite
effect. Note that this is only an apparent contradiction: in
fact, both arguments can be true since intermittency can
increase with L11/k (i.e., with increasing Reynolds number
of the initial conditions) as well as during decay for fixed
initial conditions. Thus, neither Rk nor L11/k uniquely char-
acterize the state of the turbulence, only both together. But
even this invalidated the long-standing practice in turbu-
lence (even today) to cite only Rk.

Fifth, the idea stemming from Kolmogorov [77] that eL11/t3

was a constant in decaying turbulence was challenged. The
reason for the conflict is easy to see: If L11/k is constant dur-

ing decay (as the new theory deduces) and by definition
k2 ¼ 15�u2/e, then the only way u3/e could be proportional
to L11 were if Rk ¼ constant during decay. But since for any
power law decay k2 / t (v. Ref. [66].), Rk could be constant
throughout decay only if u2 were inversely proportional to
time–which it most certainly seemed from almost all avail-
able evidence not to be. Challenging e / u3/L11 (even for a
very special flows) was, of course, considered heresy of the
highest degree, even challenging whether the coefficient
were universal.

Finally, and more problematically at the time, even though the
experiments in most wind tunnels seemed to be in agree-
ment with the predictions, the DNS of decaying turbulence
(at that time in its infancy) did not seem to behave like the
equilibrium similarity theory suggested.

By contrast with DNS, however, and in support of the new
equilibrium similarity approach, application of the same method-
ology to other homogeneous nonstationary flows accounted well
for the existing experimental results, some of which had been
quite puzzling. For example, as shown in Figs. 32 and 33, the pre-
dictions for decaying grid turbulence with temperature and veloc-
ity fluctuations seemed to be in excellent agreement with the
surprising experimental results of [16], especially the prediction
of the role of initial conditions and the Taylor spectral scaling
[12]. Similarly, as illustrated in Figs. 34–36, the equilibrium simi-
larity analysis by George and Gibson [13] accurately predicted the
growing consensus about homogeneous shear flow turbulence:
namely its dependence on initial (or upstream) conditions, and
that the turbulence intensity grew exponentially with time while
the Taylor microscale appeared to be asymptotically constant
(e.g., Rohr et al. [17], Tavoularis and Karnik [78], Gibson and
Kanellopoulos [18]). Moreover, it predicted the hitherto unnoticed
collapse of the velocity spectra in Taylor variables.

But in spite of these successes, the apparent disagreement with
the DNS, especially for decaying turbulence, pretty much kept the
new theory in limbo, at least through most of the 1990s. And there
in limbo with it was any discussion of the role of initial conditions
in decaying turbulence. How we got from there to the present pro-
vides an interesting insight into both the purely technical

Fig. 29 One-dimensional streamwise velocity spectra down-
stream of one-inch square bar grid at 10 m/s in 10 m length
Corrsin wind tunnel plotted in Taylor variables for all down-
stream positions. Data of Comte-Bellot and Corrsin [15].

Fig. 30 One-dimensional streamwise velocity spectra down-
stream of two-inch square bar grid at 10 m/s in 10 m length
Corrsin wind tunnel plotted in Taylor variables for all down-
stream positions. Data of Comte-Bellot and Corrsin [15].
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difficulties of doing good turbulence research, and how science
progresses. Ultimately the real test of any new theory is whether it
can predict something previously never observed, and we shall
see that happened as well.

Understanding the DNS. DNS (or Direct Numerical Simula-
tion) represents one of the great intellectual triumphs of the 20th
Century, and in one sense the ultimate triumph for fluid dynamic-
ists. Finally, we can directly calculate solutions to the Navier-
Stokes equations that look like flows we observe in nature. These
are equations we generally are incapable of solving analytically
for turbulence problems. Moreover we have more or less complete
control over boundary conditions and initial conditions, and can
ask questions experimentalists and fluid dynamicists of previous
generations could have never imagined getting answers to. The
ability to do DNS, however, has not come easily, and is still very
much a work in progress, in part because as computers increase in
size we can do more complex and larger computations. However,
in greater part because in the absence of any analytical solutions

for turbulence, there has been no real test for whether the simula-
tions were done correctly.

The first clue that there might be a problem with the DNS and
not the equilibrium similarity theory solution came in fact to me
from one of the pioneers of DNS for decaying turbulence (Jim
Riley of the University of Washington), who made the passing
comment to me at an APS meeting in the early 1990s that DNS
turbulence (at least at that time) did not quite look like real grid
turbulence. The second clue came during a stay in early 1999 at

Fig. 31 Log-log plot of derivative skewness of Batchelor and
Townsend [62], Mills et al. [73] and Frenkiel and Klebanoff [74]
plotted versus Rk. Dotted lines correspond to S›u=›x

Rk ¼ constant for fixed upstream conditions, each of which
denotes different grid and grid Reynolds number (from [11]).

Fig. 32 One-dimensional temperature spectra downstream of
a grid in Taylor variables. Data of Warhaft and Lumley [16] (from
Ref. [12]).

Fig. 33 One-dimensional velocity spectra behind grid in Taylor
variables. Data of Warhaft and Lumley [16] (from Ref. [12]).

Fig. 34 upper: Semi-log plot of turbulence intensities of
Tavoularis [79] showing clearly exponential growth. Lower: Tay-
lor microscales reach constant asymptote determined by initial
(upstream) conditions. Data of Gibson and Kanellopoulos
[GK1, GK2] [18]; Tavoularis and Corrsin [TC] [80]; Harris,
Graham, and Corrsin[HCG] [81], and Tavoularis and Karnik [TK]
[78]. From Ref. [13].
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the Isaac Newton Institute for Mathematics at Cambridge Univer-
sity in the UK at a special program on turbulence sponsored by
the Royal Engineering Academy. While examining some recent
DNS with Jack Herring of NCAR and David McComb of the Uni-
versity of Edinburgh, they enlightened me as to some of the tricks
used and difficulties of carrying out such large scale simulations.
For example, averaging for nonstationary problems is not really
averaging in the normal sense that we would think of for a station-
ary random process. It almost always performed over space or
wavenumber at any given time for only one member of an ensem-
ble. And this works only if the initial phases are carefully random-
ized to remove at least some of the effects of the initial
conditions. Moreover, as in any experiment, the initial conditions
very much determine the solution. At first glance, this would seem
to be consistent with the ideas presented herein, except for the ini-
tial randomization. Much more important it turns out is how close
the simulated flow is (or is not) to representing a homogeneous
flow in an infinite enviroment.

When I returned to the State University of New York at Buffalo,
I immediately set out in cooperation with a Ph.D. student, Stephan
Gamard, and post-doc, Honglu Wang, to examine the simulations
produced by some of our colleagues at Buffalo. To my surprise, it
seemed that a common practice by at least some in the field was to
set the peak in the energy spectrum as close to the lowest wave-
number as possible in order to get the highest possible Reynolds
number. So close in fact that the turbulence had little chance of
approximating a homogeneous turbulence, but instead was more
like turbulence in a box—which in fact it was! By utilizing two
carefully performed 5123 simulations which did not make this mis-
take, one from Alan Wray [82] and another from Steve de Bruyn
Kops and Jim Riley [83], we were able to make the case that in fact
the equilibrium similarity provided at least a reasonable description
of these simulations. Figures 37 and 38 show the spectral data from
both these simulations plotted in Taylor variables.

Moreover, we were able to identify the departures from equilib-
rium similarity with specific limitations of the simulations them-
selves (e.g., box size, ratio of integral scale to box-size, high
wavenumber cutoff, etc.), all detailed in Wang et al. [84]. The 323

simulations subsequently performed in 2001 with my new col-
leagues at Chalmers, Christian Wollblad and T. Gunnar Johans-
son, confirmed in a systematic way our suspicions about the effect
of box-size; in particular, that it significantly deteriorated the col-
lapse of the spectra in Taylor variables. They also proposed an
unambiguous way using dk2/dt (discussed briefly below) for iden-
tifying what the decay power exponent was quite independent of
any virtual origin in time. All these efforts were summarized the
paper by George et al. [85] at the Australasian Fluid Mechanics
meeting in a session chaired by Bob Antonia of the University of
Newcastle. After that, it seemed Bob and his co-workers went on
a mission to evaluate and prove (or disprove) the equilibrium sim-
ilarity theory. As a consequence, much of the actual progress in
this field has come from Australia, with me just along for the very
exciting ride as interested observer. Another set of key players to
recently enter the theater is the team headed by Christos Vassili-
cos at Imperial College of London using fractal grids. I shall
attempt in the following paragraphs to summarize what I think has
happened in the last decade, where I think things now stand, and
what outstanding issues are left to be resolved.

Does the Decay Rate Really Depend On The Initial
Conditions? It is easy to show (Batchelor [66]) that an immedi-
ate consequence of any power law decay is that the square of the

Fig. 35 One-dimensional velocity spectra from two different
homogeneous shear flow experiments collapsed in Taylor vari-
ables. Upper: Tavoularis and Corrsin [80]; lower: Gibson and
Kanellopoulous [18]. Each experiment has a unique spectral
shape, reflecting the different mean shear rates and upstream
conditions. From Ref. [13].

Fig. 36 Streamwise and cross-stream one-dimensional veloc-
ity spectra in Taylor variables from homogeneous shear flow
experiments of Rohr et al. [17]. Note excellent collapse at all
wavenumbers except for the very lowest which are larger than
the tunnel width so clearly cannot be considered representative
of homogeneous flow. From Ref. [13].
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Taylor microscale must depend linearly on time and inversely on
the power exponent, n. In fact, for isotropic turbulence

k2 ¼ � 10

n
�ðt� toÞ (34)

where to is some virtual origin. Thus an immediate test for a

power law decay is to plot k2 versus t and fit a straight line as
shown in Fig. 39.

Similar plots can be seen in all of the recent experiments and
DNS; e.g., Antonia et al. [86], Antonia and Orlandi [87], Lavoie
et al. [88], Burattini et al. [89], Hurst and Vassilicos [90], Lavoie
et al. [91]. All identified substantial linear regions, clearly indicat-
ing a power law decay. Moreover the decay parameters were not
the same, indicating a dependence on initial conditions.

One problem with the above methodology is that Eq. (26) has
another parameter, the virtual origin in time, to, which can provide
considerable freedom in choosing the optimal set. For example,
Hurst and Vassilicos [90] note that:

“…choosing the value of xo (the virtual origin is to ¼ xo=U sic)…
gives values of �n between 1.7 and 2.0 for the fractal cross grids and
close to 2.3 for the classical grid. This xo turns out to lie between
�0.5 m and �1.2 m and is therefore well behind the grid.”

Wang et al. [84] used a simultaneous regression on u2, e, and k2

with common parameters to minimize this problem. An even bet-
ter approach to find the decay exponent which is possible with nu-
merical data is to differentiate Eq. (26) to obtain

1

�

dk2

dt
¼ � 10

n
(35)

From this the power, n, can be determined unambiguously with no
ability to adjust a virtual origin. This was first proposed in George
et al. [85] and used extensively by Wang and George [70] from
which Figs. 40 and 41 were taken. Both illustrate nicely the path
by which the DNS settles into the asymptotic power law state for
the particular simulation, and also when it begins to depart from it
as the scales of the computation grow too large for the computa-
tional domain. The flat regions in the graphs correspond to

Fig. 37 Three-dimensional energy spectrum function, Eðk ; tÞ
plotted in Taylor variables using DNS data of deBruyn Kops and
Riley [83], from Wang and George [70]. Note that unscaled data
varied by approximately a factor of 8 for the time segment
shown. Also note the sparseness of low wavenumber data.

Fig. 38 Three-dimensional energy spectrum function, Eðk ; tÞ
plotted in Taylor variables using DNS data of Wray [82], from
Wang and George [70]. Note that unscaled data varied by
approximately a factor of 7 for the time segment shown. Also
note the sparseness of low wavenumber data.

Fig. 39 Plot of k2 versus time for DNS of deBruyn Kops and
Riley [83], from Wang and George [70]. Both original data and
data corrected for missing lowest wavenumbers are shown.

Fig. 40 Plot of dk2=dt versus time for DNS of deBruyn Kops
and Riley [83], from Wang and George [70]. The flat region cor-
responds to a region of power law decay. For the corrected data
n ¼ �1:17.
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n ¼ �1:17 and n ¼ �1:5 respectively, indicating a substantial dif-
ference arising from the initial conditions.

The interrelation of the energy decay exponent and the nonlin-
ear spectral transfer can easily be obtained by substituting the var-
ious deduced results into Eq. (19) to obtain

GðkÞ ¼ � 5

n
½kF0 þ F� � 10f þ 2k

2
F (36)

where GðkÞ is the nonlinear spectral transfer function and FðkÞ is
the energy spectrum, both normalized in Taylor variables. Note
that there are no adjustable parameters. Figures 42 and 43 show
excellent agreement between the computation and theory for the
data of references [82] and [83] cited earlier; thus illustrating the
internal consistency of both theory and data even though the spec-
tra and decay rates are quite different.

Unfortunately, we do not yet have a theory as to what it is about
the initial conditions that makes these decay rates different. But
Burattini et al. [89] used a lattice Boltzmann simulation to carry
out a systematic study of the effect of initial conditions, in particu-
lar to test the suggestion of George [11] that the decay exponent
might tend toward n¼�1 as the Reynolds number characterizing
the initial conditions increased. They summarized their findings as
follows:

“The present data, together with other values available in the
literature, suggest that �n decreases towards 1, as Rkð0Þ (the initial
value, sic) increases.”

Clearly this idea merits further attention, but care must be taken
to use only identical families of generators so as to not mix effects
of Reynolds number with geometrical differences. Given the im-
portant role of the very largest scales probably even the ratio of
tunnel (or computational box) size to generator size needs to be
maintained as constant.

Do the Two-Point Statistics Really Collapse in Taylor
Variables? One of the most surprising aspects of the equilibrium
theory was that it in fact was able to collapse the pre-exisiting
spectral data of both Comte-Bellot and Corrsin (Figs. 29 and 30)
and Warhaft and Lumley (Fig. 33). Howeever, as noted above, the
early DNS of decaying turbulence were problematical. Figures 37
and 38 show the spectra in Taylor variables for the two more
recent DNS considered above for which the peak in the spectrum
was well above the lowest wavenumber. Clearly the collapse is
excellent, even on a linear-linear plot. Nonetheless, the lack of
data at the lower wavenumbers complicates analysis.

Two of the many recent experimental evaluations of the spec-
tral collapse postulated by the equilibrium similarity theory are
shown in Figs. 44 and 45. Figure 44 shows the data from different

Fig. 41 Plot of dk2=dt versus time for DNS of Wray [82], from
Wang and George [70]. The flat region corresponds to a region
of power law decay. For the corrected data, n ¼ �1:5.

Fig. 42 Nonlinear transfer using DNS of deBruyn Kops and
Riley [83] for all decay times and Eq. (36) with n ¼ �1:17, from
George and Wang [92]. Solid line shows computed spectral
transfer.

Fig. 43 Nonlinear transfer using DNS of Wray [82] and Eq. (36)
with n ¼ �1:5, from George and Wang [92]. Also shown are the
dissipation spectrum and the spectrum of dE=dt.

Fig. 44 Pre-multiplied longitudinal one-dimensional spectrum
in Taylor variables, from Antonia et al. [86]

061203-18 / Vol. 134, JUNE 2012 Transactions of the ASME

Downloaded 16 Jul 2012 to 155.198.69.157. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



downstream positions of k1F
ð1Þ
11 ðk1Þ (the so-called pre-multiplied

spectrum) from the extensive experiments carried out using a clas-
sic square bar grid in the wind tunnel at the University of Newcas-
tle by Antonia et al. [86]. Figure 45 depicts a re-plot by one of my
former Ph.D. students, Maja Wänström, of the data for both the
longitudinal spectra, F

ð1Þ
11 ðk1Þ, and the transverse spectra, F

ð1Þ
22 ðk1Þ,

taken by Kang et al. [93] using an active grid in the Corrsin wind
tunnel facility at the Johns Hopkins University. The Reynolds
numbers achieved in this latter experiment are nearly an order of
magnitude higher than that available with standard grids or DNS.
Interestingly, the power law decay exponent for the Kang et al.
[93] data was nearly the same as the Comte-Bellot and Corrsin
data taken in the same wind tunnel decades earlier, even though
the Reynolds number was an order of magnitude higher, the turbu-
lence intensities much higher, and the grids very different.
Clearly, the spectral collapse is excellent in all cases, strongly
implying that this kind of turbulence can be characterized by the
Taylor microscale at all scales of motion. Note that all these spec-
tra collapsed to a unique curve for each set of initial conditions;
thus confirming the postulated dependence on initial conditions.

Before leaving this section, we note that Antonia et al. [86]
have considered the entire question of equilibrium similarity using
the structure function equations. Structure functions are defined
from moments of the difference in velocity between two points,
e.g., the second order structure function defined by
hðdqÞ2i ¼ h½uðxþ rÞ � uðxÞ�2i. The results are perfectly equiva-
lent to the spectra, but since the structure functions consider sepa-
ration instead of wavenumber, the plots emphasis different scales
of motion. Figure 46 plots the longitudinal structure function nor-
malized in Taylor variables from the wind tunnel experiment at
the University of Newcastle corresponding to the spectral data
shown above. Again the collapse is quite spectacular, emphasizing
again the validity of the equilibrium similarity approach.

Antonia et al. [86] summarize their findings as follows:

“The analysis and arguments presented… indicate that similarity of the
transport equation for decaying homogeneous isotropic turbulence is
possible when the characteristic velocity scale, hq2i decays in power-
law fashion, i.e., hq2i / tn; and the characteristic length scale, which is
identifiable with the Taylor microscale, grows as k / t1=2. The (local
sic) turbulence Reynolds number, Rk, can decay with t if the exponent
�n is smaller than 1. These results are in full accord with the results
obtained by [11] by considering the spectral energy equation.”

Prediction before Measurement: Exponential Decay. One
of the most interesting results in the past few years (at least from a
theoretical point of view) has come from the work of Vassilicos
and co-workers at Imperial College who used three different fami-
lies of fractal grids (space-filling fractal-cross, fractal-I, and
fractal-square) to examine decaying turbulence (e.g., Hurst [94],
Hurst and Vassilicos [90], Seoud and Vassilicos [95]). The differ-
ent grids clearly stamp their signature on the turbulence even far
downstream, and the decay rate is most certainly not a single uni-
versal power law. The fractal-square family of grids even yields
an exponential decay. Interestingly, the possibility of exponential
decay was predicted in 1999 in a paper by Wang and George by
considering equilibrium similarity solutions to Eq. (13) for which
the length scale did not increase during decay. It was rejected for
publication by two leading journals with the stated reason by the
editors as: “…since such turbulence has never been observed,”
clearly an interesting criterion for advances in physics. Now such
turbulence most certainly has been observed (as illustrated
below), and happily the paper was published by a third journal as
well [96], albeit a decade late.

Figure 47 from Hurst and Vassilicos [90] shows the particular
family of grids (space-filling fractal square) which yields expo-
nentially decaying turbulence. Curiously, other fractal designs
produce power law decaying turbulence remarkably similar to

Fig. 45 Longitudinal and transverse one-dimensional velocity
spectra normalized in Taylor variables for four downstream
positions from active grid experiment of Kang et al. [93] as (pro-
vided by M. Wänström) (Longitudinal [- - -], Transverse [. . ..]).
Note the fact that the spectra do not flatten out for the lowest
wavenumbers suggests strongly that the integral scales are not
sufficiently well-resolved [6].

Fig. 46 Energy structure function in Taylor variables, from
Antonia et al. [86]

Fig. 47 Diagram of space-filling square fractal grid, from Fig.
33 of Hurst and Vassilicos [90]
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classical grids (see Hurst and Vassilicos [90]). But for the family
of grids shown in Fig. 48, the decay rate was very different.7

Figure 49 shows a semi-log plot of the decay for the entire family
of grids, along with an exponential fit to the data. All but one (the
largest) eventually decay exponentially, and even it seems to be
evolving in the same manner.

The Wang and George [96] theory predicted that the Taylor
microscale should be constant during decay. Figure 50 makes it
clear that for this exponentially decaying turbulence, it is. More-
over, the theory also predicted a constant ratio of integral scale to
Taylor microscale, exactly as observed in Fig. 51. Finally, the
theory predicted the spectral data should collapse when normal-
ized in Taylor variables, t2 and k. Clearly, as shown in Fig. 52,
they do.

Some Remaining Difficulties. For all of the nonstationary
homogeneous flows considered herein, the equilibrium similarity
theory makes predictions about the behavior of both the integral
scale, L11 and the derivative skewness, S@u=@x. In particular the
equilibrium similarity theory argues that the physical integral
scale, L11, defined by Eq. (22) should be proportional to the Tay-
lor microscale, k. Also, the derivative skewness, S@u=@x, should be
inversely proportional to R�1

k . The constants of proportionality
can depend only on the initial conditions. There has been consid-
erable difficulty, however, consistently confirming these results
with recent experiments and DNS, and both remain problematical.
Therefore we consider each of these issues separately. From the
perspective of this article, neither of these would be of concern
were it not for the fact that only the equilibrium similarity theory
(to this point at least) seems to be able to predict from first princi-
ples an asymptotic dependence on initial conditions. As such, the
validity of theory and phenomenon would seem to be inextricably
linked, at least until other theories appear. However, the fact that
this theory also implies that the ratio eL11/u3 is not constant during
the time evolution of any of these nonstationary homogenous
flows means that the Kolmogorov theory [77] cannot be universal
and that has enormous implications.

Integral scale, integral invariants, and domain size. Integral
scales are routinely reported, but in fact are extraordinarily diffi-
cult to measure correctly. Moreover, they are very much influ-
enced by the flow boundary conditions, and even the precise
definition used to determine them experimentally varies from
experiment to experiment. Both these problems can be related to a
large degree to the breakdown of the ‘assumed’ homogeneity of
experiments and simulations at the largest scales of motion. All
experiments and DNS are performed inside finite boundaries. And
it is the largest scales that contribute disproportionately to the in-
tegral scale. Figures 53 and 54 show the integrand of Eq. (22),
Eðk; tÞ/k, normalized in Taylor variables for both DNS data sets
considered earlier. Clearly neither provides enough resolution at
low values of k to make a reasonable integral scale determination.
Figure 55 from Wang and George [70] shows the ratio of the inte-
gral scale to Taylor microscale from the DNS data of deBruyn
Kops and Riley [83], both before and after attempting to compen-
sate for the missing lowest wavenumbers from the finite ‘box
size’ of the simulation. A simple spectral model showed that the
wavenumber of the spectral peak of the simulation needed to be
about 10 times larger than that of the lowest wavenumber of the
simulation to correctly estimate the integral scale. This criterion is
even more severe if its time variation is of interest, since the

Fig. 48 Variation of turbulence intensity with downstream
position for one space-filling fractal grid. Solid line shows ex-
ponential fit (from Hurst and Vassilicos [90]).

Fig. 49 Semi-log plot of variation of turbulence intensity for
various space-filling fractal grids showing (with one exception)
asymptotic exponential decay (linear region), from Hurst and
Vassilicos [90]

Fig. 50 Downstream variation of Taylor microscale, k, for dif-
ferent upstream conditions (from Hurst and Vassilicos [90].)

7The fact that there were three families of fractal grids, only one of which
behaved very differently was inexplicably (since the mistake was pointed out by a
reviewer) ignored by Krogstad and Davidson [97] who used measurements behind
grids from the fractal-cross family to challenge the surprising ICL findings from the
fractal-square grids, and to argue for a universal decay law. A reanalysis of their data
by Valente and Vassilicos [98] showed the K-D results to be both consistent with the
earlier ICL results for such grids, and to exhibit a clear dependence on initial condi-
tions. That JFM refused to publish their rebuttal illustrates the intransigence of some
segments of the community to new ideas, and the extent some are willing to go sup-
press challenges to the classical thinking.
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relative errors in its determination are themselves time-dependent.
Clearly compensating for the missing scales is far less satisfactory
than in simulating them correctly to begin with, since this is only
kinematic correction. The most important question is: How much
greater than the integral scale must the extent of the flow be to
insure that the simulation or experiment is in fact dynamically rep-
resentative of a mathematically homogeneous flow which by defi-
nition must be of infinite extent? Until this question is resolved,
the behavior of the integral scale must be regarded as unresolved,
but it is likely related to the question of integral invariants dis-
cussed in the following paragraph.

That there might be a relation between integral invariants and
dynamics was first raised by Loitsianskii [99], at least for the
decay of homogeneous turbulence. Reference [67] provides an
extensive review of the resulting debate over many years;
Refs. [100,101] provide more recent contributions. The m-th order
integral invariant, ImðtÞ, is defined by

ImðtÞ ¼
ð1

0

rmB1;1ðr; 0; 0; tÞdr (37)

where B1;1ðr; tÞ ¼ hu1ðx; y; z; tÞu1ðxþ r; y; z; tÞi and is the inverse
Fourier transform of the one-dimensional velocity spectrum,
F
ð1Þ
1;1ðk1; tÞ. For example, m ¼ 0 corresponds to the integral scale

(discussed in the preceding paragraph) times hu2
1i, m ¼ 2 corre-

sponds to the so-called Saffman integral and m ¼ 4 to the Loit-
sianskii integral (see Ref. [67]). Note that there are variations on
these integrals using Bi;ið~rÞ, the trace of the two-point velocity
correlation, instead of the streamwise correlation, B1;1ðrÞ. By
assuming a simple exponential behavior, B1;1ðr; tÞ ¼ u2e�jrj=L11 , it
is easy to show that many integral scales of data are necessary to
estimate these to a high accuracy, even if the flow is truly repre-
sentative of a homogenous flow. But most importantly, if one is
interested in the time variation of these quantities, then it is the
time variation of the truncation error that is of primary concern,
so even much more restrictive criteria must be applied (i.e., many
many integral scales). As a consequence, these issues remain very
much in doubt, and are likely to remain so for some time. Unfortu-
nately, it is precisely this missing information that tells us how
boundaries affect the turbulence everywhere, so they most likely
have implications for numerical simulations and experiments of
all types, not just homogeneous turbulence.

Derivative skewness and small scale resolution. The same
concerns apply to attempts to measurement the derviative

Fig. 51 Ratio of integral scale to Taylor microscale for different
upstream conditions (from Seoud and Vassilicos [95])

Fig. 52 One-dimensional spectra showing collapse during
decay with u2 and k. Legend denotes downstream position
(from Seoud and Vassilicos [95]).

Fig. 53 Integrand of integral scale spectral integral, Eðk ; tÞ=k
plotted in Taylor variables using DNS data of deBruyn Kops and
Riley [83], from Wang and George [70]. Note the sparseness of
low wavenumber data.

Fig. 54 Integrand of spectral integral, Eðk ; tÞ=k plotted in Tay-
lor variables using DNS data of Wray [82], from Wang and
George [70]. Note the sparseness of low wavenumber data.
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skewness. The derivative skewness may seem to most engineers
to be one of those strange quantities that only true turbulence
experts worry about. But it is easy to show that it lies at the heart
of one of the most unresolved problems in turbulence modeling,
namely how to model the dissipation equation. A spectral dissipa-
tion equation for homogeneous turbulence can readily be obtained
from Eq. (13) by multiplying it by 2�k2; i.e.,

@

@t
2�k2E
� �

¼ 2�k2T � 4�2k4E (38)

Integrating this equation over all wavenumbers leads immediately
to the homogeneous dissipation rate equation; i.e.,

de
dt
¼ Pe � De (39)

where Pe represents the ‘production’ of dissipation and De repre-
sent the ‘dissipation’ of dissipation. If we leave out the factor of
2� in Eq. (38), we have instead the balance equation for the mean
square vorticity. This is because for a homogeneous flow
2hsijsiji ¼ hxixii where sij is the fluctuating strain-rate tensor and
x is the fluctuating vorticity. In this latter equation, the ‘produc-
tion’ term can be readily interpreted as the amplification of new
fluctuating vorticity from old by the stretching and turning of vor-
tex lines by the turbulence itself. Regardless of which form we
use, it is clear that the production of both dissipation and fluctuat-
ing vorticity is reflected in the integral of k2T, the second spectral
moment of the nonlinear spectral transfer term. For isotropic tur-
bulence this integral is directly related to the velocity derivative
skewness, S@u1=@x1

, by

S@u1=@x1
¼ h½@u1=@x1�3i
h½@u1=@x1�2i3=2

¼ � 3
ffiffiffiffiffi
30
p

14

ð1
0

k2Tðk; tÞdk

ð1
0

k2Eðk; tÞdk

� �3=2

(40)

The velocity derivative skewness is therefore a direct measure of
the role of the nonlinear spectral transfer—in fact our lowest order
measure, since the integral of Tðk; tÞ itself is identically zero.
Thus, it has considerable theoretical significance, especially since
different theories of turbulence predict different behaviors for it.
For example, in the classical Kolmogorov-based theories it is pre-

dicted to be a universal constant for decaying turbulence (typi-
cally about 0.5), but in the intermittency-based models to increase
with Reynolds number [67,102]. In the G92-type similarity
approach outlined above, the product S@u1=@x1

Rk is predicted to be
constant during decay, but to increase with the ratio of integral
scale to Taylor microscale which is itself constant during decay
but depends (in some unknown way) on the Reynolds number of
the initial conditions (e.g., the grid Reynolds number in a wind
tunnel). These differences among theories would seem to provide
direct tests of the validity of any theory.

Unfortunately, S@u1=@x1
has also proven to be extraordinarily dif-

ficult to simulate or measure, and accurate determination in any
flow remains a significant challenge to the next generation DNS
and experimental communities. Figure 56 shows the second spec-
tral moment in Taylor variables of the nonlinear transfer data of
Ref. [83] presented in Fig. 42. The first term on the right-hand-
side is always negative (in decaying turbulence), so it is the emer-
gence of the last term on the right-hand-side with increasing
wavenumber that accomplishes the necessary sign change. Obvi-
ously failure to resolve high enough wavenumbers (or small enough
scales) to accurately determine the last integral will very much
affect the results. The near collapse in Taylor variables is consistent
with the equilibrium similarity results and S@u1=@x1

Rk ¼ const; how-
ever, in contradiction, integration over all wavenumbers shows
S@u1=@x1

� const. The differences can be shown to be entirely due
to contributions to the integral from wavenumbers larger than
1/gKol. This is problematical since most numerical simulations are
performed to resolve to approximately kgKol � 1, where
gKol ¼ ð�2/eÞ3=4

) is the so-called ‘Kolmogorov microscale.’ This is
sometimes erroneously referred to as the ‘smallest scale of the tur-
bulence.’ It is, of course, not the smallest scale of the turbulence!
The turbulence scales diminish with diminishing energy all the way
to infinitesimal (or in practice until the continuum limit). In fact,
herein is another misunderstanding that is widespread in the turbu-
lence field, especially among those focused on applications. It is
generally believed that the Kolmogorov microscale is the smallest
dynamically significant length ‘scale’ which can be defined from
the parameters in the spectral equations. It is not. There are many
smaller length scales which can be defined from the higher order
spectral equation and their integrals. For example using ee, the dis-
sipation of the dissipation (familiar to all turbulence modelers)
defined from the integral of the last term in Eq. (38) as

ee ¼ 4�2

ð1
�1

k4EðkÞdk (41)

a dissipation of dissipation length scale can be defined as
gee ¼ ð�4/eeÞ1=6

. This process of definition can be continued indef-
initely using the dissipation of the dissipation of the dissipation,
etc. Clearly gee plays the analogous role in the fluctuations

Fig. 55 Plot of L11=k versus time for DNS of deBruyn Kops and
Riley [83], from Wang and George [70]

Fig. 56 Second moment of three-dimensional spectral trans-
fer, k 2T ðk ; tÞ plotted in Taylor variables using DNS data of
deBruyn Kops and Riley [83]
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dissipating the dissipation that the Kolmogovor microscale, gKol,
itself plays in the energy dissipation. But what is that? Why do we
care about the Kolmogorov microscale?

The answer is this: gKol is of practical interest because it is the
wavenumber below which about 99% of the dissipation occurs;
i.e., 2�

Ð 1=gKol

0
k2Edk � 0:99e. In other words, the contributions to

the dissipation integral of Eq. (20) are essentially negligible above
kgKol ¼ 1 or slightly smaller. So if we are only interested in the
overall energy balance, this is enough resolution. Unfortunately,
this is not true for the last integral of Eq. (38), since its integrand
depends on k4E, which can have significant contributions above
kgKol ¼ 1 (in fact to approximately kgee

¼ 1), and this in turn can
make estimates of the integral of k2T and the derivative skewness
very much in doubt. Similar considerations must apply to attempts
to measure as well.

There is another serious consequence for DNS of this finite re-
solution as well (v. Ref. [103].) which is especially important in a
statistically nonstationary turbulence (like decaying turbulence),
which can make an entire simulation into doubt. If the integral of
k6E is not resolved, then this affects the balance equation for the
dissipation of the dissipation which depends on k4E, and that in
turn affects k2E through Eq. (38), and finally quite directly, the
energy. If all the scales are growing with time, then things
improve with time. More subtle but of equal concern is: where
does the energy that should have gone to even higher (or lower)
wavenumbers actually go? Clearly because the nonlinear interac-
tions of the turbulence in a homogeneous flow move energy
among triads of wavenumbers, the energy either piles up at the
extremes or is redirected to wavenumbers where it should not be.
When this happens, the simulation can no longer be considered an
approximation to a homogenous turbulence, but rather is a peri-
odic flow in a box. Two clues that this is happening in DNS for
example are that the three-dimensional spectrum function, Eðk; tÞ
starts filling in at the lowest wavenumber and at the very highest
wavenumbers. This very much affects both the integral and spec-
tral moments, rendering both unreliable.

Wind tunnel experiments at least avoid part of this problem,
since the flow itself produces the finest scales possible, at least
eventually. Measuring them accurately can be an almost impossible
challenge though, particularly because of the problem of having
probes sufficiently small to measure fourth spectral moments to suf-
ficient accuracy and to be able to accurately determine how they
change in time. Also, the errors induced by using Taylor’s hypothe-
sis to estimate either dissipation or derivative skewness can intro-
duce a significant apparent but unreal time variation all by itself
[104,105]. This arises due to the leakage down the spectrum caused
by the fluctuating convection velocity introduced by the finite (and
varying) turbulence intensity [106]. Figures 57 and 58 from Burat-
tini et al. [107] illustrate the problem nicely. They show respec-
tively how S@u1=@x1

and its product with Rk vary downstream of a
grid. Depending on what part of the flow is considered and whether
data are corrected or not, almost any hypothesis can be supported.
A new generation of careful experiments in very large facilities is
clearly needed to sort this out.

Kolmogorov turbulence: ‘local’ equilibrium or not? Finally,
although tangential to the issue of asymptotic sensitivity to initial
conditions, the universality and applicability of Kolmogorov
thinking to at least the nonstationary homogeneous flows consid-
ered herein has been challenged both theoretically and experimen-
tally (see Refs. [11,95,108]. In particular, the nonstationary results
appear to be inconsistent with at least some ideas long accepted as
fact: among them, the interpretation of u3/e as proportional the
physical length scale, L11

8 and the universal scaling of the dissipa-
tive motions (note that the discrepancies arise only for flows
whose statistical quantities vary in time, or at least flows which
closely approximate them). At the very core of Kolmogorov’s

arguments was the assumption of local equilibrium, meaning that
the smallest scales of motion (highest wavenumbers in Batche-
lor’s interpretation [66]) could be considered in statistical equilib-
rium. This is usually justified by time scale arguments using the
fact that the time scales of the smallest eddies (or highest wave-
numbers) are very small compared to those at the energetic scales,
and this difference increases with increasing Reynolds number.
From this it is argued that in Eq. (13), for example, that
@E=@t� T or 2�k2E for the high wavenumbers, and therefore
can be neglected relative to them. Thus the local equilibrium of
the smallest scales is postulated (or highest wavenumbers). If the
theory and experiments reviewed earlier are correct, then this
assumption is not valid for these flows, since all scales (or wave-
numbers) evolve together. It is easy to see the flaw in the time
scale argument, since the time scale argument makes the implicit
assumption that the scaling of changes in E are the same at all
wavenumbers. Clearly they are not.

There have been other clues as well that nonequilibrium turbu-
lence may march to a different drummer than the commonly
assumed Kolmogorov ideas of local equilibrium would imply.
Yeung et al. [68] summarized their extensive numerical experiments
on distant triadic interaction in homogeneous turbulence as follows:

The results indicate that non-equilibrium non-stationary turbulence
is particularly sensitive to long-range interactions and deviations
from local isotropy.

In other words, with reference to Fig. 28, it is the wavenumbers
which are not of nearly equal length, which are important. More-
over they further state:

Fig. 57 Burattini et al. [107] measurements of derivative skew-
ness in decaying grid turbulence (corrected and uncorrected)

Fig. 58 Burattini et al. [107] measurements of derivative skew-
ness times Rk in decaying grid turbulence (corrected and
uncorrected)

8So predominant is this view that many actually call u3=e the integral scale, even
though a correct application of K41 thinking suggests that it must at least be Reyn-
olds number dependent for a fixed geometry (see Ref. [109]).
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This work indicates that Fourier modes, and their corresponding
scales of motion, are dynamically coupled over large separation in
scale, the strength of the coupling increasing with the relative
energies of the large- and small-scale modes. Within the individual
triads, then, the strongest couplings tend to be between the large
energy-containing scales and the dissipative scales with local Reyn-
olds number of order one or greater. Because an element of small-
scale evolution is coupled to the structure and evolution of the large
scales with the distant triadic group, if the large scales have a statisti-
cally preferred direction, the energy transfer within the distant group
of triadic interactions also has a preferred direction. This directional
dependence persists in ensemble averages of statistically similar
flows. The distant group, then, is in principle at variance with the
Kolmogorov hypothesis of statistical large-small scale independence
in the asymptotic limit (Yeung et al. [68]).

The examples cited herein of nonstationary turbulence would
seem to behaving in a manner consistent with these observations.

Summary and Conclusions

It is clear from all the flows considered herein that initial condi-
tions play an important role in the development of turbulent shear
flows, and even in nonstationary homogeneous turbulent flows.
We have considered only flows for which there is a corresponding
equilibrium similarity solution consistent with experimental
observations. There do exist, however, other classes of flows
where recent observations have shown the influence of initial/
upstream conditions, but which for the sake of compactness have
not been covered in the above discussion. Prominent examples
include the shear layers of Slessor et al. [110] and flows with
buoyancy effects and density variations; e.g., the Rayleigh-Taylor
flows of Ristorcelli and Clark [111], Ramaprabhu et al. [112],
Mueschke et al. [113],Youngs [114], and even multiphase flows,
e.g., Arndt and Wosnik [115]. In addition, it has become quite re-
spectable to consider that turbulent boundary layers might grow at
rates determined by the initial conditions; e.g., Cal et al. [116],
Castillo and George [19,20].

Thus, while there might have been reasons to doubt the role of
initial conditions 20 years ago, or even to question the experi-
ments or a new theory, the careful studies of the past two decades
have made it clear that theory and experiment are in agreement:
initial (and/or upstream) conditions do matter. In some flows they
do not matter very much; in other flows, they matter a great deal.
Regardless of the degree of importance, they are problematical for
engineers because no single point turbulence model can account
for them, since the initial conditions are buried in the model con-
stants. Thus there can be no universal single point model for tur-
bulence, not that anyone really recently believed there could be.
Structure-based models can perhaps account for the observed
differences, but only if we can establish which properties of the
initial (or upstream) flow need to be accounted for. By contrast,
LES seems to retain all of the essential information, or at the
very least can reflect differences in how the flow is started. But
again, the question remains: what information should be pro-
vided initially?

Unfortunately, our theoretical understanding of how initial con-
ditions can persist has progressed less rapidly than our recognition
that they do. It is, however, of rapidly increasing interest. See for
example the papers from the ‘Symposium on initial conditions in
turbulence’ organized by Fernando Grinstein at the 2003 AIAA
meeting in Reno, NV and published in the Mar. 2004 issue of the
AIAA Journal. However, the future of LES is really bleak if we
have to run a DNS to begin every computation, just to make sure
we get the right starting details. The recent success of the LEA/
Poitier group using POD to provide LES initial conditions is at
least a step in the right direction of simplifying the requirements
(vis. Drualt et al. [117]). Another interesting approach is by David
Youngs [114] of AWE in the UK who has used LES in Rayleigh-
Taylor flows to explore a possible coupling between initial condi-
tions and boundary conditions.

Regardless of the issues above, it seems that a properly con-
structed equilibrium similarity theory (when such solutions exist)
is both consistent with the observations and can even be said to
“predict” them. Moreover, theory and experiments together imply
that the usually assumed universality of Kolmogorov thinking
does not apply to at least these nonstationary flows, since they do
not satisfy his local equilibrium hypothesis. What we do not know
is whether these equilibrium similarity flows are unique in their
ability to remember how they were generated, or whether this is a
general feature of most turbulent flows. It is quite important to
know this. If the similarity flows are indeed ‘special’, they would
not be representative of flows of engineering interest. So we
should not be using them to create (or calibrate) models for turbu-
lence. On the other hand, if these simple flows are representative,
then they could provide wonderful platforms for investigating
how initial (or upstream) conditions are propagated, and for test-
ing models which retain the right dependencies. And that is, of
course, what we would really like to know, especially if we are
interested in trying to control or tailor flows by how we start
them: this would be real turbulence control.
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Nomenclature
A ¼ constant defined by Eq. (25)
B ¼ constant defined by Eq. (26)

B1;1 ¼ hu1ðx; y; z; tÞu1ðxþ r; y; z; tÞi, ðmÞ
Bi;i ¼ huiðx; y; z; tÞuiðxþ r; y; z; tÞi, ðmÞ

C ¼ constant defined by Eq. (27)
D ¼ jet diameter, ðmÞ

D� ¼ effective jet diameter, defined by Eq. (8), ðmÞ
Do ¼ drag per unit length per unit mass, ðm3/s2Þ

DNS ¼ direct numerical simulation
E ¼ three-dimensional energy spectrum function of wave-

number k, ðm2/s3Þ
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E11 ¼ 2F
ð1Þ
11 , ðm2/s3Þ

Es ¼ energy scaling function defined by Eq. (22), ðm3/s2Þ
F ¼ dimensionless spectrum defined by Eq. (22)
f ¼ dimensionless velocity profile, generally function of g

and initial conditions
Fo ¼ rate at which buoyancy is added at axisymmetric

source, ðm3/s2Þ
F
ð1Þ
11 ¼ one-dimensional wavenumber spectrum of streamwise

velocity, ðm3/s2Þ
F
ð1Þ
22 ¼ one-dimensional wavenumber spectrum of cross-

stream velocity, ðm3/s2Þ
F
ð1Þ
hh ¼ spectrum of temperature fluctuations, ððdeg KÞ2mÞ
G ¼ dimensionless energy transfer function defined by

Eq. (23)
g ¼ dimensionless Reynolds stress profile, generally func-

tion of g and initial conditions
Go ¼ rate at which angular momentum per unit mass is added

to jet, ðm5/s2Þ
~k ¼ wavenumber, ðm�1Þ
K ¼ ¼ dU=dy, mean shear rate in homogeneous shear flow,

ðs�1Þ
k ¼ magnitude of wavenumber, k ¼ j~kj, ðm�1Þ
k ¼ wavenumber, k, nondimensionalized by L
~k ¼ wavenumber nondimensionalized by k

k1 ¼ streamwise component of wavenumber ~k, ðm�1Þ
k1 ¼ nondimensional wavenumber, ¼ k1k
L ¼ similarity length scale to be determined by analysis,
ðmÞ

Lo ¼ plane wake ‘width’ defined in Ref. [4] as
2UoLo ¼ U1h, ðmÞ

LM ¼ buoyancy (or ‘Morton’) length scale defined by
Eq. (10), ðmÞ

Ls ¼ swirl length scale defined by Eq. (11), ðmÞ
L11 ¼ integral length scale defined by Eq. (29), ðmÞ
M ¼ mesh size for wind tunnel grid, ðmÞ

Mo ¼ rate at which momentum per unit mass is added at axi-
symmetric source, ðm4/s2Þ

mo ¼ rate at which mass per unit mass is added at source,
ðm3/s2Þ

n ¼ exponent for power law decay of turbulence energy in
decaying turbulence

Pe ¼ rate of production of turbulence dissipation by turbu-
lence itself, ðm2/s4Þ

Rk ¼ ¼ uk/�, Reynolds number based on turbulence inten-
sity and Taylor microscale

r ¼ radial r, ðmÞ
q ¼ kinetic energy scale, defined by q2 ¼ uiui ¼ 3t2, ðm/sÞ

r1=2 ¼ half-width of pulsed jet, distance from centerline where
U ¼ Uc/2, ðmÞ

~r ¼ ¼ r/k
Rs ¼ x-dependent Reynolds stress scale to be determined by

equilibrium similarity analysis, (m/s)
S ¼ swirl number defined as S ¼ 2Go=MoD

S� ¼ effective swirl number defined as S� ¼ 2Go=MoD�
S@u1=@x1

¼ derivative skewness, ½h@u/@x�3i/h½@u/@x�2i3=2

T ¼ nonlinear spectral transfer from triadic interactions,
ðm3/s3Þ

t ¼ Time, (s)
Ts ¼ scale function for spectral energy transfer defined by

Eq. (23) ðm3/s3Þ
ui ¼ fluctuating velocity vector, ðm/sÞ
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huiuii/3

p
, velocity fluctuation, ðm/sÞ

u1 ¼ 1-component of fluctuating velocity, ðm/sÞ
u2 ¼ 2-component of fluctuating velcocity, ðm/sÞ
u0 ¼ RMS fluctuating velocity, ðm/sÞ
v ¼ cross-stream (plane flows) or radial (axisymmetric)

flows fluctuating velocity, ðm/sÞ
U ¼ streamwise velocity, generally function of position,

ðm/sÞ

Uc ¼ centerline mean velocity, ðm/sÞ
Uj ¼ jet exit velocity for top-hat jet, ðm/sÞ
Uo ¼ centerline mean velocity deficit for wakes, U1 � Ucl;

but mean convection velocity for homogeneous shear
flow turbulence, ðm/sÞ

Us ¼ x-dependent velocity scale to be determined by equilib-
rium analysis, ðm/sÞ

U� ¼ effective jet velocity, defined by Eq. (9), ðm/sÞ
U1 ¼ free stream value of streamwise velocity, ðm/sÞ

V ¼ cross-stream (plane) or radial (axisymmetric) mean ve-
locity, ðm/sÞ

v ¼ cross-stream (plane) or radial (axisymmetric) fluctuat-
ing velocity, ðm/sÞ

W ¼ azimuthal component of mean velocity, ðm/sÞ
x ¼ streamwise coordinate, (m)

xM ¼ x=M, streamwise coordinate normalized by grid mesh
xo ¼ virtual origin for streamwise coordinate, (m)

xpeak ¼ streamwise coordinate at which energy peaks down-
stream of fractal grid, ðmÞ

x ¼ dimensionless streamwise wake coordinate measured
from virtual origin, ðx� xoÞ=2h, (m)

y ¼ cross-stream coordinate in plane flows, ðmÞ
d ¼ x-dependent length scale, determined by equilibrium

similarity analysis, (m)
hðdqÞ2i ¼ velocity structure function,

¼ h½uðxþ r; y; z; tÞ � uðx; y; z; tÞ�2i, ðm2/s2Þ
hð~dqÞ2i ¼ structure function nondimensionalized by hu2

1i
d� ¼ axisymmetric wake ‘width’ defined in Ref. [31] as

U2
od� ¼ U2

1h, ðmÞ
d1=2 ¼ jet half-width, distance from centerline where

U ¼ Uc/2, ðmÞ
e ¼ local rate of dissipation of turbulence kinetic energy

per unit mass, ðm2/s3Þ
ee ¼ local rate of dissipation of dissipation per unit mass,

ðm2/s4Þ
g ¼ dimensionless similarity coordinate, ¼ y/dðxÞ or r/dðxÞ

gKol ¼ Kolmogorov microscale, ¼ ð�3/eÞ1=4
, ðmÞ

~/ij ¼ nondimensional 1-dim. velocity spectra, same as
F
ð1Þ
i;j ðk1; tÞ=hu2

1ik, ðm3/s2Þ
k ¼ Taylor microscale, defined by Eq. (30), ðmÞ

kh ¼ Taylor microscale of temperature fluctuations,
¼ hh2i/h½@h/@x1�2i, ðmÞ

� ¼ kinematic viscosity, ðm2/sÞ
q ¼ fluid density, ðkg/m3Þ
h ¼ momentum thickness, defined for plane wake by

Eq. (2), ðmÞ
t ¼ turbulence velocity scale defined by Eq. (18), ðm/sÞ
� ¼ argument representing possible dependence on initial

or upstream conditions, (m/s)
0 ¼ denotes differentiation by g; i.e., d=dg, ðm�1Þ
h i ¼ indicates ensemble average
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